

ADDITIONALTM
PRACTICE

MATHEMATICS 10

Harbour Press[®]
INTERNATIONAL

WORKSHEET I

Section A

1. Here, a is a dividend.
2. Number 13233343563715 is a composite number as it has more than two factors and a number which has more than two factors is a composite number and it is also divisible by 5 besides 1 and the number itself.
3.
$$\begin{aligned}\text{Dividend} &= \text{Divisor} \times \text{Quotient} + \text{Remainder} \\ &= 53 \times 34 + 21 \\ &= 1802 + 21 \\ &= 1823\end{aligned}$$
4. $y = 5 \times 13 = 65$
 $x = 3 \times 195 = 585$
5. $\text{HCF}(k, 2k, 3k, 4k, 5k) = k$
6. Smallest composite no. = 4
Smallest prime no. = 2
 $\therefore \text{HCF}(2, 4) = 2$
7. $6n = (2 \times 3)n$
We know that a number ends with digit 0 only if it has both 2 and 5 as factors. As $6n$ does not have 5 as a prime factor, so, $6n$ does not end with digit 0.
8. $P = ab^2 \quad Q = a^3b$
FACTORS OF P(ab^2) = $a \times b \times b$
FACTORS OF Q(a^3b) = $a \times a \times a \times b$
so, LCM OF PQ = $a \times a \times a \times b \times b$
= a^3b^2
9. $\text{HCF of } a = x^3y^2$
 $b = xy^3$
 $a = x \times x \times y \ y$
 $b = x \ y \ y \ y$
The highest common factors of a and b are
 xy^2
10. $\text{LCM}(a, b) = \frac{a \times b}{\text{HCF}(a, b)}$
= $\frac{1800}{12} = 150$

Section B

11. Let a be a given positive number.
On dividing a by 4, let q be the quotient and r be the remainder.
Then, by Euclid's algorithm, we have:
 $a = 4q + r$ where $0 \leq r < 4$
 $a = 4q + r$ where $r = 0, 1, 2, 3$
 $a = 4q + 2 = 2(2q + 1)$
It is clearly shown that $2q + 1$ is divisible by 2. Therefore, $4q + 2$ is a positive integer.
12. Using Euclid's Algorithm,
 $240 = 228 \times 1 + 12$

$$228 = 12 \times 19 + 0$$

Here, remainder = 0, Divisor = 12

So, HCF (240, 228) = 12

13. If a, b are any two positive numbers

Their HCF (a, b) = h and LCM (a, b) = l then

$$a \times b = h \times l$$

Given

$$a = 253, b = 440$$

$$h = 11$$

$$l = 253 \times R$$

Therefore

$$h \times l = a \times b$$

$$11 \times 253 \times R = 253 \times 440$$

$$R = \frac{(253 \times 440)}{(11 \times 253)}$$
$$R = 40$$

14. $3 \times 12 \times 101 + 4$

$$= 4 \times (3 \times 3 \times 101 + 1)$$

So, 4 is also a factor of $3 \times 12 \times 101 + 4$ besides 1 and the no. itself.

So, $3 \times 12 \times 101 + 4$ is a composite number.

15. Step by step explanation:

We have 1200,

We first factorise the number "1200".

$$1200 = 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5$$

We can see that 3 has no pair.

To make it a perfect square, we will multiply by 3 on both the sides.

$$1200 \times 3 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$$

$$\sqrt{3600} = \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5}$$

$$\sqrt{3600} = 2 \times 2 \times 3 \times 5$$

$$\sqrt{3600} = 60$$

Hence, 3 is the smallest natural number by which 1200 should be multiplied so that to make it a perfect square.

16. Factors of 1 to 10 numbers

$$1 = 1$$

$$2 = 1 \times 2$$

$$3 = 1 \times 3$$

$$4 = 1 \times 2 \times 2$$

$$5 = 1 \times 5$$

$$6 = 1 \times 2 \times 3$$

$$7 = 1 \times 7$$

$$8 = 1 \times 2 \times 2 \times 2$$

$$9 = 1 \times 3 \times 3$$

$$10 = 1 \times 2 \times 5$$

$$\text{LCM of number 1 to 10} = \text{LCM} (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$$

$$= 1 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$$

17. Let x and $x + 1$ be two consecutive positive integers.

If x is even, $x + 1$ is odd, so, $x (x + 1)$ is even

If x is odd, $x + 1$ is even, so, $x(x + 1)$ is even.

Therefore, the product of two consecutive positive integers is always divisible by 2.

18. $3 \times 5 \times 13 \times 46 + 23 = 23 \times (3 \times 5 \times 13 \times 2 + 1)$

So, 23 is a factor of $3 \times 15 \times 13 \times 46 + 23$ besides 1 and the no. itself.

Therefore, $3 \times 5 \times 13 \times 46 + 23$ is a composite number.

19. As least prime factor of a is 3, a is an odd no. (because if a is even then its least prime factor must be 2).

Also, as least prime factor of b is 5, b is an odd no.

Therefore, $a + b$ is even such that its least prime factor is 2.

20. No, two numbers can not have 15 as their HCF and 175 as their LCM because 15 is not a factor of 175.
(HCF of two numbers is always the factor of their LCM)

Section C

21. Using Euclid's Division lemma.

$$a = 6q + r; 0 < r < 6$$

$$r = 0, a = 6q = 2(3q), \text{ even}$$

$$r = 1, a = 6q + 1 = 2(3q) + 1, \text{ odd}$$

$$r = 2, a = 6q + 2 = 2(3q + 1), \text{ even}$$

$$r = 3, a = 6q + 3 = 2(3q + 1) + 1, \text{ odd}$$

$$r = 4, a = 6q + 4 = 2(3q + 2), \text{ even}$$

$$r = 5, a = 6q + 5 = 2(3q + 2) + 1, \text{ odd}$$

So, any positive even integer can be written in the form of $6q$, $6q + 2$ or $6q + 4$.

22. We know that any positive odd integer (say a) is of form $4q + 1$ or $4q + 3$

Case 1

$$a = 4q + 1$$

$$\begin{aligned} a^2 &= (4q + 1)^2 = 16q^2 + 1 + 8q = 8(2q^2 + q) + 1 \\ &= 8m + 1 \quad (m = 2q^2 + q) \end{aligned}$$

Case 2

$$a = 4q + 3$$

$$\begin{aligned} a^2 &= (4q + 3)^2 = 16q^2 + 9 + 24q = 8(2q^2 + 3q + 1) + 1 \\ &= 8m + 1 \quad (m = 2q^2 + 3q + 1) \end{aligned}$$

So, square of an odd positive integer is of form $8m + 1$.

23. Consider 252 and 324.

Here, $a = 324$ and $b = 252$

by Euclid's division lemma

$$a = bq + r, \quad 0 \leq r < b$$

$$324 = 252 \times 1 + 72$$

$$252 = 72 \times 3 + 36$$

$$72 = 36 \times 2 + 0$$

Therefore, $\text{HCF}(252, 324) = 36$

Now consider 36 and 180.

Here $a = 180$ and $b = 36$.

by Euclid's division lemma- $a = bq + r, 0 < r < b$

$$180 = 36 \times 5 + 0$$

Therefore, $\text{HCF}(180, 36) = 36$

Hence, $\text{HCF}(180, 252, 324) = 36$

24. Using Euclid's Division lemma,

$$a = 5q + r; 0 < r < 5$$

$$r = 0, a = 5q, a^2 = 25q^2 = 5m (m = 5q^2)$$

$$\begin{aligned} r &= 1, a = 5q + 1, a^2 = 25q^2 + 1 + 10q \\ &= 5(5q^2 + 2q) + 1 \\ &= 5m + 1 (m = 5q^2 + 2q) \end{aligned}$$

$$\begin{aligned} r &= 2, a = 5q + 2, a^2 = 25q^2 + 4 + 20q \\ &= 5(5q^2 + 4q) + 4 \\ &= 5m + 4 (m = 5q^2 + 4q) \end{aligned}$$

$$\begin{aligned} r &= 3, a = 5q + 3, a^2 = 25q^2 + 9 + 30q \\ &= 5(5q^2 + 6q + 1) + 4 \\ &= 5m + 4 (m = 5q^2 + 6q + 1) \end{aligned}$$

$$\begin{aligned} r &= 4, a = 5q + 4, a^2 = 25q^2 + 16 + 40q \\ &= 5(5q^2 + 8q + 3) + 1 \\ &= 5m + 1 (m = 5q^2 + 8q + 3) \end{aligned}$$

So, square of positive integer cannot be of form $5m + 2$ or $5m + 3$.

25. Minimum distance each should walk so that each can cover the same distance.
 $= \text{LCM}(40, 42, 45)$
 $= 2520 \text{ cm}$

2	40,	42,	45
2	20,	21,	45
5	10,	21,	45
2	2,	21,	9
3	1,	21,	9
3	1,	7,	3
7	1,	7,	1
	1	1	1

26. $7 \times 19 \times 11 + 11 = 11(7 \times 19 \times 1 + 1)$

So, 11 is also a factor of $7 \times 19 \times 11 + 11$ besides 1 and number itself.

So, $(7 \times 19 \times 11 + 11)$ is a composite number.

$$7 \times 6 \times 4 \times 3 \times 2 \times 1 + 3 = 3(7 \times 6 \times 4 \times 2 \times 1 + 1)$$

So, 3 is also a factor of $7 \times 6 \times 4 \times 3 \times 2 \times 1 + 3$ besides 1 and number itself.

So, $7 \times 6 \times 4 \times 3 \times 2 \times 1 + 3$ is a composite number.

27. Here, we have to find LCM (12, 15, 18) which indicates after how long they all again toll together.
 $\text{LCM}(12, 15, 18) = 180$
So, three bells will toll together after 180 minutes i.e. 3 hours.

28. Using Euclid's division algorithm,

$$1170 = 650 \times 1 + 520$$

$$650 = 520 \times 1 + 130$$

$$520 = 130 \times 4 + 0$$

$$\text{So, HCF}(650, 1170) = 130$$

Therefore, the largest number which divides 650 and 1170 exactly is 130.

$$\begin{aligned} 29. \text{ Consider } \frac{1}{3 + 2\sqrt{2}} &= \frac{1}{3 + 2\sqrt{2}} \times \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\ &= \frac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} = \frac{3 - 2\sqrt{2}}{1} = 3 - 2\sqrt{2} \end{aligned}$$

Let if possible $3 - 2\sqrt{2}$ is rational

$$3 - 2\sqrt{2} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

2	12,	15,	18
3	6,	15,	9
2	2,	5,	3
3	1,	5,	3
5	1,	5,	1
	1	1	1

$$\frac{1}{2} \left(3 - \frac{p}{q}\right) = \sqrt{2}$$

Here, $\frac{1}{2} \left(3 - \frac{p}{q}\right)$ is rational but $\sqrt{2}$ is irrational which is not possible.

So, we get a contradiction.

Therefore, $3 - 2\sqrt{2}$ is irrational.

i.e. $\frac{1}{3 + 2\sqrt{2}}$ is irrational.

30. Using Euclid's division lemma,

$$117 = 65 \times 1 + 52$$

$$65 = 52 \times 1 + 13$$

$$52 = 13 \times 4 + 0$$

Here, remainder = 0, divisor = 13

So, HCF (117, 65) = 13

To find : m, n

$$\begin{aligned} 13 &= 65 - 52(1) \\ &= 65 - (117 - 65(1)) \\ &= 65(2) + 117(-1) \\ &= 65m + 117n \end{aligned}$$

So, m = 2, n = -1

Section D

31. Using Euclid's Division Algorithm, we get

$$256 = 36 \times 7 + 4$$

$$36 = 4 \times 9 + 0$$

Here, remainder = 0, divisor = 4

So, HCF (256, 36) = 4

$$\begin{aligned} \text{LCM (256, 36)} &= 2^8 \times 3^2 \\ &= 2304 \end{aligned}$$

2	256, 36
2	128, 18
2	64, 9
2	32, 9
2	16, 9
2	8, 9
2	4, 9
2	2, 9
3	1, 9
3	1, 3
	1, 1

Now,

$$\begin{aligned} \text{HCF} \times \text{LCM} &= 4 \times 2304 \\ &= 9216 \end{aligned}$$

$$\begin{aligned} \text{Product of numbers} &= 256 \times 36 \\ &= 9216 \end{aligned}$$

So, $HCF \times LCM = \text{Product of numbers}$

32. We know that every positive even integer is of form $2q$ and every positive odd integer is of form $2q + 1$.

Case 1 $n = 2q$

$$\text{Consider } n^2 - n = 4q^2 - 2q = 2(2q^2 - q)$$

$\therefore n^2 - n$ is divisible by 2

Case 2 $n = 2q + 1$

$$\text{Consider } n^2 - n = (2q + 1)^2 - (2q + 1)$$

$$= 4q^2 + 1 + 4q - 2q - 1$$

$$= 4q^2 + 4q - 2q$$

$$= 2(2q^2 + 2q - q)$$

$$= 2(2q^2 + q)$$

$\therefore n^2 - n$ is divisible by 2.

From Case 1, Case 2, we get $n^2 - n$ is divisible by 2 for every positive integer n .

33. According to Euclid's Division lemma,

$$a = 3q + r, 0 \leq r < 3$$

For $r = 0$

$$a = 3q \Rightarrow a^3 = 27q^3 \Rightarrow a^3 = 9(3q^3)$$

$$= 9m (m = 3q^3)$$

For $r = 1$

$$a = 3q + 1 \Rightarrow a^3 = 27q^3 + 1 + 27q^2 + 9q$$

$$= 9(3q^3 + 3q^2 + q) + 1$$

$$= 9m + 1 (m = 3q^3 + 3q^2 + 2)$$

For $r = 2$

$$a = 3q + 2 \Rightarrow a^3 = 27q^3 + 8 + 54q^2 + 36q$$

$$= 9(3q^3 + 6q^2 + 4q) + 8$$

$$= 9m + 8 (m = 3q^3 + 6q^2 + 4q)$$

Therefore, cube of any positive integer is of form $9m$, $9m + 1$ or $9m + 8$ for some integer m .

34. (i) Greatest possible length of each plank

$$= HCF(42, 49, 56)$$

$$= HCF(2 \times 3 \times 7, 7^2, 2^3 \times 7)$$

$$= 7$$

So, greatest possible length of each plank is 7m.

(ii) $HCF(182, 169)$

$$= HCF(2 \times 7 \times 13, 13^2)$$

$$= 13$$

2	182	13	169
7	91	13	13
13	13	13	13
		1	1

35. To find the no. of required baskets such that Each basket contains only one of the two fruits but equal in number.

We will find the H.C.F i.e. highest common factor

H.C.F : The largest common factor of two or more numbers is called the highest common factor

Thus $990 = 2 \times 3 \times 3 \times 4 \times 5$

$$945 = 3 \times 3 \times 3 \times 5 \times 7$$

Thus $HCF = 3 \times 3 \times 5 = 45$

Thus the no. of fruits to be put in each basket in order to have minimum no. of baskets = 45.

36. Let the three consecutive positive integers be $n, n + 1$ and $n + 2$.

If number is divided by 3, remainder can be 0,

1 or 2. i.e. $n = 3q + r, 0 \leq r < 3$

If $r = 0, n = 3q$ divisible by 3

If $r = 1, n + 2 = 3q + 1 + 2$

$$= 3q + 3$$

$$= 3(q + 1) \text{ divisible by 3}$$

If $r = 2, n + 1 = 3q + 2 + 1 = 3(q + 1)$ divisible by 3

So, one of numbers $n, n + 1$, and $n + 2$ must be divisible by 3 i.e. $n(n + 1)(n + 2)$ is divisible by 3

Now, if a number is divided by 2, remainder is 0 or 1

i.e. $n = 2q + r, 0 \leq r < 2$

$r = 0, n = 2q$ divisible by 2

Also, $n + 2 = 2q + 2 = 2(q + 1)$ divisible by 2

So, one of $n, n + 1$ or $n + 2$ is divisible by 2 i.e.

$n(n + 1)(n + 2)$ is divisible by 2.

Since, $n(n + 1)(n + 2)$ is divisible by 2 and 3

implies $n(n + 1)(n + 2)$ is divisible by 6.

37. (a)	2 420	2 180	2 378
	2 210	2 90	3 189
	5 105	3 45	3 63
	3 21	3 15	3 21
	7 7	5 5	7 7

So, HCF of 378, 180 and 420 is $2 \times 3 = 6$

And LCM of 378, 180 and 420 is $2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 7 = 3780$

So, let us check whether

$\text{LCM}(378, 180 \text{ and } 420) \times \text{HCF}(378, 180 \text{ and } 420)$

is equal to the product of the three numbers

$$3780 \times 6 = 378 \times 180 \times 420$$

$$22680 \neq 28576800$$

Hence $\text{LCM} \times \text{HCF}$ is not equal to the product of the three numbers.

Now $\text{HCF} \times \text{LCM}$

$$= 6 \times 3780 = 22680$$

$$\text{Product of numbers} = 378 \times 180 \times 420$$

$$= 28576800$$

So, $\text{HCF} \times \text{LCM} \neq \text{Product of numbers.}$

(b) Let if possible $2\sqrt{2}$ is rational.

$$2\sqrt{2} = \frac{p}{q}, p \text{ and } q \text{ are integers, } q \neq 0$$

$$\Rightarrow \sqrt{2} = \frac{p}{q}$$

Here, $\frac{p}{2q}$ is rational but $\sqrt{2}$ is irrational

So, we get a contradiction.

$\therefore 2\sqrt{2}$ is irrational.

2 378,	180,	420
3 189,	90,	210
3 63,	30,	70
7 21,	10,	70
2 3,	10,	10
5 3,	5,	5
3 3,	1,	1

38. (i) Let if possible $\frac{2\sqrt{3}}{5}$ is rational.

$$\frac{2\sqrt{3}}{5} = \frac{p}{q}; p \text{ and } q \text{ are integers, } q \neq 0$$

$$\sqrt{3} = \frac{5p}{2q}$$

Here, $\frac{5p}{2q}$ is rational but $\sqrt{3}$ is irrational which is not possible, so we get a contradiction.

$$\therefore \frac{2\sqrt{3}}{5} \text{ is irrational.}$$

(ii) 3 rational numbers between 1.12 and 1.13 are 1.1210, 1.1211, 1.1213.

3 irrational numbers between 1.12 and 1.13 are 1.121121112111..., 1.1221222..., 1.123123312333...

WORKSHEET 2

Section A

1. Here, denominator = $2^2 \cdot 5^7 \cdot 7^2$. As denominator is not of the form $2^m \times 5^n$, so, the given rational number has a nonterminating repeating decimal expansion.

$$\begin{aligned} 2. \quad \frac{2\sqrt{45} + 2\sqrt{20}}{2\sqrt{5}} &= \frac{6\sqrt{5} + 4\sqrt{5}}{2\sqrt{5}} \\ &= \frac{10\sqrt{5}}{2\sqrt{5}} \\ &= 5 \text{ which is rational.} \end{aligned}$$

3. $\text{HCF}(a, b) \times \text{LCM}(a, b) = a \times b$

$$15 \times \text{LCM} = 45 \times 105$$

$$\text{LCM} = \frac{45 \times 105}{15} = 315$$

4. Decimal expansion will terminate after 4 places of decimal.

5. $\text{HCF} \times \text{LCM} = 100 \times 170 = 17000$.

6. Here, denominator = 1500 = $2^2 \times 3 \times 5^3$

As denominator is not of the form $2^m \times 5^n$, so, it has non-terminating repeating decimal expansion.

7. $\text{HCF}(a, b) \times \text{LCM}(a, b) = a \times b$

$$9 \times 360 = a \times 45$$

$$\frac{9 \times 360}{45} = a$$

$$72 = a$$

$$8. \quad \frac{7}{625} = 0.0112$$

$$\begin{aligned} 9. \quad \frac{95}{40} + \frac{15}{4} &= \frac{95 + 150}{40} \\ &= \frac{245}{40} = 6.125 \end{aligned}$$

10. Decimal expansion will terminate after 5 places of decimal.

Section B

11.

$$\begin{array}{r} 0.375 \\ 8 \overline{)3} \\ -0 \\ \hline 30 \\ -24 \\ \hline 60 \\ -56 \\ \hline 40 \\ -40 \\ \hline 0 \end{array}$$

$$\therefore \frac{3}{8} = 0.375$$

12. Let if possible $5\sqrt{6}$ is rational.

$$5\sqrt{6} = \frac{p}{q}; p, q \text{ are integers, } q \neq 0$$

$$\sqrt{6} = \frac{p}{5q}$$

Here, $\frac{p}{5q}$ is rational but $\sqrt{6}$ is irrational which is not possible. So, we get a contradiction i.e. $5\sqrt{6}$ is irrational.

13. Let $x = 1.\overline{41} \dots \quad (1)$

$$x \times 100 = 1.\overline{41} \times 100$$

$$100x = 141.1\overline{41} \quad (2)$$

On subtracting (1) from (2), we get

$$99x = 140$$

$$x = \frac{140}{99}$$

14. Maximum capacity = HCF (850, 680)

$$= \text{HCF} (2 \times 5^2 \times 17, 2^3 \times 5 \times 17)$$

$$= 2 \times 5 \times 17$$

$$= 170 \text{ l.}$$

15. (i) $(-1) + (-1)^{2n} + (-1)^{2n} + 1 + (-1)^{4n+1}$

$$= (-1) + (1) + (-1) + (-1)$$

$$= -2$$

$$\text{(ii)} \quad \left(2^3\right)^{\frac{-5}{3}} = 2^{3 \times \frac{-5}{3}} = 2^{-5} = \frac{1}{2^5} = \frac{1}{32}$$

16. The given rational number is $\frac{13}{64}$

$$\text{Now} \quad \frac{13}{64} = \frac{13}{2^6} = \frac{13}{2^6 \times 5^0}$$

The denominator of the given rational number is of the form

$$2^m \times 5^n, \text{ i.e. } 2^6 \times 5^0$$

∴ The decimal expansion of $\frac{13}{64}$ is of the form of terminating.

The decimal expansion of $\frac{13}{64}$ terminates after 6 places of decimal.

$$\begin{array}{r} 0.203125 \\ 64 \overline{)13.000000} \\ 128 \\ \hline 200 \\ 192 \\ \hline 80 \\ 64 \\ \hline 160 \\ 128 \\ \hline 320 \\ 320 \\ \hline 0 \end{array}$$

17. Using Euclid's Algorithm.

$$4052 = 420 \times 9 + 272$$

$$420 = 272 \times 1 + 148$$

$$272 = 148 \times 1 + 124$$

$$148 = 124 \times 1 + 24$$

$$124 = 24 \times 5 + 4$$

$$24 = 4 \times 6 + 0$$

Here remainder = 0, Divisor = 4

So, HCF (4052, 420) = 4

18. Let if possible $\frac{3}{\sqrt{5}}$ is rational

$$\frac{3}{\sqrt{5}} = \frac{p}{q}, p, q \text{ are integers, } q \neq 0$$

$$\sqrt{5} = \frac{3q}{p}$$

Here, $\frac{3q}{p}$ is rational but 5 is irrational which is not possible, so we get a contradiction.

∴ $\frac{3}{\sqrt{5}}$ is irrational.

19. Using Euclid's Division Algorithm,

$$180 = 144 \times 1 + 36$$

$$144 = 36 \times 4 + 0$$

Here, remainder = 0, divisor = 36

So, HCF (144, 180) = 36

We can write

$$36 = 180 - 144 \quad (1)$$

$$= 36$$

$$= 39 - 3$$

$$= 13(3) - 3$$

$$= 13m - 3$$

$$m = 3$$

20. $9^n = (3 \times 3)^n$

Since, prime factorization does not contain 2 and 5, so, it cannot end with digit 0.

Section C

21. Let if possible $\sqrt{3} + \sqrt{5}$ is rational

$$\sqrt{3} + \sqrt{5} = \frac{p}{q} \text{ } p \text{ and } q \text{ are integers and } q \neq 0$$

$$\sqrt{3} = \frac{p}{q} - \sqrt{5}$$

$$\Rightarrow (\sqrt{3})^2 = \left(\frac{p}{q} - \sqrt{5}\right)^2$$

$$3 = \frac{p^2}{q^2} + 5 - \frac{2p}{q} \sqrt{5}$$

$$\frac{2p}{q} \sqrt{5} = \frac{p^2}{q^2} + 2$$

$$\sqrt{5} = \frac{q}{2p} \left(\frac{p^2}{q^2} + 2 \right)$$

Here, $\frac{q}{2p} \left(\frac{p^2}{q^2} + 2 \right)$ is rational but $\sqrt{5}$ is irrational, which is not possible.

Therefore, $\sqrt{3} + \sqrt{5}$ is irrational.

22. Let if possible $2\sqrt{3} + \sqrt{7}$ is rational

$$2\sqrt{3} + \sqrt{7} = \frac{p}{q}, q \text{ are integers, } q \neq 0$$

$$\sqrt{7} = \frac{p}{q} - 2\sqrt{3}$$

$$7 = \frac{p^2}{q^2} + 12 - \frac{4p}{q} \sqrt{3}$$

$$\frac{4p}{q} \sqrt{3} = \frac{p^2}{q^2} + 5$$

$$\sqrt{3} = \frac{q}{4p} \left(\frac{p^2}{q^2} + 5 \right)$$

Here, $\frac{q}{4p} \left(\frac{p^2}{q^2} + 5 \right)$ is rational but $\sqrt{3}$ is irrational which is not possible. So, we get a contradiction

$\therefore 2\sqrt{3} + \sqrt{7}$ is irrational.

$$(2\sqrt{3} + \sqrt{7})(2\sqrt{3} - \sqrt{7}) = (2\sqrt{3})^2 - (\sqrt{7})^2 \\ = 12 - 7 = 5 \text{ which is rational}$$

23. $5 \times 7 \times 13 \times 17 + 289 = 17(5 \times 7 \times 13 \times 1 + 17)$

Here, 17 is also a factor of $5 \times 7 \times 13 \times 17 + 289$ besides 1 and number itself. So, it is a composite number.

$$\text{Also, } 7 \times 11 \times 13 \times 15 + 225 = (7 \times 11 \times 13 \times 1 + 15) 15$$

Here, 15 is also a factor of $7 \times 11 \times 13 \times 15 + 225$ besides 1 and number itself. So, it is a composite number.

24. LCM (20, 30, 40) = 120

So, all the three bells will toll together after 120 minutes i.e. 2 hours.

25. Using Euclid's Division algorithm.

$$2058 = 378 \times 5 + 168$$

$$378 = 168 \times 2 + 42$$

$$168 = 42 \times 4 + 0$$

Here, remainder = 0, divisor = 42

So, HCF (2058, 378) = 42

2	20,	30,	40
2	10,	15,	20
5	5,	15,	10
2	1,	3,	2
3	1,	3,	1
	1	1	1

26. Let $HCF = x$

$\therefore LCM = 14x$

$LCM + HCF = 600$

$14x + x = 600$

$15x = 600 \Rightarrow x = 40$

We know that $HCF(a, b) \times LCM(a, b) = a \times b$

$40 \times 14 \times 40 = a \times 280$

$$a = \frac{40 \times 14 \times 40}{280}$$

$$= 80$$

27. According to Euclid's division lemma,

$a = bq + r$ and $0 \leq r < b$

let a = Some integer

$b = 4$

$r = 0, 1, 2, 3$

$a = 4q, 4q + 1, 4q + 2, 4q + 3$

Therefore, a is a positive integer if

$a = 4q + 1, 4q + 3$

28. Let if possible $7 - 2\sqrt{3}$ is rational.

$$7 - 2\sqrt{3} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

$$2\sqrt{3} = 7 - \frac{p}{q}$$

$$\sqrt{3} = \frac{1}{2} \left(7 - \frac{p}{q} \right)$$

Here, $\frac{1}{2} \left(7 - \frac{p}{q} \right)$ is rational but $\sqrt{3}$ is irrational which is not possible.

So, we get a contradiction

$\therefore 7 - 2\sqrt{3}$ is irrational.

Section D

29. (i) Let if possible $\frac{1}{\sqrt{2}}$ is rational

$$\frac{1}{\sqrt{2}} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

$$\sqrt{2} = \frac{q}{p}$$

Here, $\frac{q}{p}$ is rational but $\sqrt{2}$ is irrational which is not possible. So, we get a contradiction.

$$\therefore \frac{1}{\sqrt{2}} \text{ is irrational}$$

(ii) Let if possible $7\sqrt{5}$ is rational

$$7\sqrt{5} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

$$\sqrt{5} = \frac{p}{7q}$$

Here, $\frac{p}{7q}$ is rational but $\sqrt{5}$ is irrational which is not possible. So, we get a contradiction.

$\therefore 7\sqrt{5}$ is irrational.

30. Using Euclid's division algorithm

$$237 = 81 \times 2 + 75$$

$$81 = 75 \times 1 + 6$$

$$75 = 6 \times 12 + 3$$

$$6 = 3 \times 2 + 0$$

$$\text{So, HCF}(237, 81) = 3$$

$$\text{Consider } 3 = 75 - 6(12)$$

$$= (81 - 6) - 6(12)$$

$$= 81 - 13(6)$$

$$= 81 - 13(81 - 75)$$

$$= 81 - 81(13) + 13(237 - 81(2))$$

$$= 81(1 - 13 - 26) + 237(13)$$

$$= 81(-38) + 237(13)$$

$$= 81x + 237y$$

$$\text{where } x = -38, y = 13$$

31. HCF (96, 240, 336)

$$= \text{HCF}(2^5 \times 3, 2^4 \times 3 \times 5, 2^4 \times 3 \times 7)$$

$$= 2^4 \times 3$$

$$= 48$$

$$\text{So, number of stacks of English books} = \frac{96}{48} = 2$$

$$\text{Number of stacks of Hindi books} = \frac{240}{48} = 5$$

$$\text{Number of stacks of Mathematics books} = \frac{336}{48} = 7$$

32. (i) \Rightarrow AS we have to find 5 rational numbers between 1 and 2

\Rightarrow We can consider = 1.1, 1.2, 1.3, 1.4, 1.5

$$= \frac{11}{10}, \frac{12}{10}, \frac{13}{10}, \frac{14}{10}, \frac{15}{10}$$

$$= \frac{11}{10}, \frac{6}{5}, \frac{13}{10}, \frac{7}{5}, \frac{3}{2}$$

(ii) HCF (70 - 5, 125 - 8)

$$= \text{HCF}(65, 117)$$

$$= \text{HCF}(5 \times 13, 32 \times 13)$$

$$= 13$$

33. Let if possible $\sqrt{3}$ is rational

$$\sqrt{3} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

$$\text{HCF}(p, q) = 1$$

$$q\sqrt{3} = p$$

$$3q^2 = p^2$$

3 divides $p^2 \Rightarrow$ 3 divides p

$$p = 3c$$

$$p^2 = 9c^2 \Rightarrow 3q^2 = 9c^2$$

$$q^2 = 3c^2$$

$\Rightarrow 3$ divides $q^2 \Rightarrow 3$ divides q

So, p and q have atleast 3 in common which is a contradiction to the fact that HCF (p, q) = 1

So, our supposition was wrong,

$\sqrt{3}$ is irrational.

34. According to Euclid's division lemma, for any positive integer n , we have

$$n = bq + r, \quad 0 \leq r < b$$

Take $b = 5$

$$n = 5q + r, \quad 0 < r < 5$$

For $r = 0$

$$n = 5q, \quad \text{divisible by 5}$$

$$n + 4 = 5q + 4, \quad \text{not divisible by 5}$$

$$n + 8 = 5q + 8, \quad \text{not divisible by 5}$$

$$n + 12 = 5q + 12, \quad \text{not divisible by 5}$$

$$n + 16 = 5q + 16, \quad \text{not divisible by 5}$$

So, for $r = 0$, only n is divisible by 5

For $r = 1$

$$n = 5q + 1, \quad \text{not divisible by 5}$$

$$n + 4 = 5q + 1 + 4$$

$$= 5q + 5$$

$$= 5(q + 1), \quad \text{divisible by 5}$$

$$n + 8 = 5q + 1 + 8$$

$$= 5q + 9, \quad \text{not divisible by 5}$$

$$n + 12 = 5q + 1 + 12$$

$$= 5q + 13, \quad \text{not divisible by 5}$$

$$n + 16 = 5q + 1 + 16$$

$$= 5q + 17, \quad \text{not divisible by 5.}$$

So, for $r = 1$, only $n + 4$ is divisible by 5

For $r = 2$,

$$n = 5q + 2, \quad \text{not divisible by 5}$$

$$n + 4 = 5q + 6, \quad \text{not divisible by 5}$$

$$n + 8 = 5q + 10$$

$$= 5(q + 2), \quad \text{divisible by 5}$$

$$n + 12 = 5q + 14, \quad \text{not divisible by 5}$$

$$n + 16 = 5q + 18, \quad \text{not divisible by 5}$$

So, for $r = 2$, only $n + 8$ is divisible by 5

For $r = 3$

$$n = 5q + 3, \quad \text{not divisible by 5}$$

$$n + 4 = 5q + 7, \quad \text{not divisible by 5}$$

$$n + 8 = 5q + 11, \quad \text{not divisible by 5}$$

$$n + 12 = 5q + 15$$

$$= 5(q + 3), \quad \text{divisible by 5}$$

$$n + 16 = 5q + 19, \quad \text{not divisible by 5.}$$

So, for $r = 3$, only $n + 12$ is divisible by 5.

For $r = 4$

$$n = 5q + 4, \quad \text{not divisible by 5}$$

$$n + 4 = 5q + 8, \quad \text{not divisible by 5}$$

$$n + 8 = 5q + 12, \quad \text{not divisible by 5}$$

$$n + 12 = 5q + 16, \quad \text{not divisible by 5}$$

$$n + 16 = 5q + 20$$

$$= 5(q + 4), \text{ divisible by 5}$$

So, for $r = 4$, only $n + 16$ is divisible by 5.

35. Let if possible $n + \sqrt{m}$ is rational

$$n + \sqrt{m} = \frac{p}{q}, p \text{ and } q \text{ are integers and } q \neq 0$$

$$\therefore \sqrt{m} = \frac{p}{q} - n$$

Here, $\frac{p}{q} - n$ is rational (as p, q are integers and n is rational) but \sqrt{m} is irrational.

So, we get a contradiction.

Therefore, $n + \sqrt{m}$ is irrational.

36. To prove: $\sqrt{p} + \sqrt{q}$ is irrational.

Let if possible $\sqrt{p} + \sqrt{q}$ is rational

$$\sqrt{p} + \sqrt{q} = \frac{a}{b}, a \text{ and } b \text{ are integers and } b \neq 0$$

$$\sqrt{p} = \frac{a}{b} - \sqrt{q}$$

On squaring both sides, we get

$$p = \frac{a^2}{b^2} + 2 - \frac{2a}{b} \sqrt{q}$$

$$\frac{2a}{b} \sqrt{q} = \frac{a^2}{b^2} + q - p$$

$$\sqrt{q} = \frac{b}{2a} \left(\frac{a^2}{b^2} + q - p \right)$$

Here, $\frac{b}{2a} \left(\frac{a^2}{b^2} + q - p \right)$ is rational but \sqrt{q} is irrational (as square root of a prime number is irrational)

which is not possible.

So, we get a contradiction.

Therefore, $\sqrt{p} + \sqrt{q}$ is irrational.

37. $= 72/24 \text{ km/h} = 3 \text{ km/h}$

Time = Distance/Speed

$$\text{Time for 1^{st} cyclist} = \frac{360}{2} = 180 \text{ hrs}$$

$$\text{Time for 2^{nd} cyclist} = 360 \div \frac{60}{24} = 144 \text{ hrs}$$

$$\text{Time for 3^{rd} cyclist} = \frac{360}{3} = 120 \text{ hrs}$$

L.C.M of 180, 144, 120 = 720 hrs

$$\text{Total Time taken in days} = \frac{720}{24} = 30 \text{ days}$$

38. (i) In order to find the maximum number of columns in which they can march, we will find HCF (32, 616).

$$32 = 2^5$$

$$616 = 2^3 \times 7 \times 11$$

$$\text{So, HCF (32, 616)} = 2^3 = 8$$

Hence, maximum number of columns = 8

(ii) We know that for any two positive integers a and b ,

$$\text{LCM}(a, b) \times \text{HCF}(a, b) = a \times b$$

$$\text{LCM}(306, 657) \times \text{HCF}(306, 657)$$

$$= 306 \times 657$$

$$\text{LCM}(306, 657) \times 9 = 306 \times 657$$

$$\text{LCM}(306, 657) = \frac{306 \times 657}{9} = 22338$$

39. (i) According to Euclid's Division lemma,

$$a = bq + r; \quad 0 \leq r < b$$

Take $b = 6$

$$a = 6q + r; \quad 0 < r < 6$$

For $r = 0$

$$a = 6q$$

$= 2(3q)$ which is even

For $r = 1$

$$a = 6q + 1$$

$= 2(3q) + 1$ which is odd

For $r = 2$

$$a = 6q + 2$$

$= 2(3q + 1)$ which is even

For $r = 3$

$$a = 6q + 3$$

$$= 6q + 2 + 1$$

$= 2(3q + 1) + 1$ which is odd

For $r = 4$

$$a = 6q + 4$$

$= 2(3q + 2)$ which is even

For $r = 5$

$$a = 6q + 5$$

$$= 6q + 4 + 1$$

$= 2(3q + 2) + 1$ which is odd

Therefore, every positive integer is of form $6q + 1$ or $6q + 3$ or $6q + 5$.

(ii) $\text{LCM}(x^3 y^3, x^3 y^5) = x^3 y^5$

40. (i) 135 and 225

$$225 = 135 \times 1 + 90$$

$$135 = 90 \times 1 + 45$$

$$90 = 45 \times 2 + 0$$

So, $\text{HCF}(135, 225) = 45$

(ii) 196 and 38220

$$38220 = 196 \times 195 + 0$$

So, $\text{HCF}(196, 38220) = 196$

(iii) 867 and 255

$$867 = 255 \times 3 + 102$$

$$255 = 102 \times 2 + 51$$

$$102 = 51 \times 2 + 0$$

So, $\text{HCF}(867, 255) = 51$

MULTIPLE CHOICE QUESTIONS

1. (a) Let α, β be the zeroes of $f(x)$

$$\therefore \alpha\beta = 3$$

$$\Rightarrow \frac{K}{1} = 3$$

$$\Rightarrow K = 3,$$

2. (c) $\alpha + \beta = \frac{-3}{4}$, $\alpha\beta = \frac{7}{4}$

$$\text{So, } \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{\frac{-3}{4}}{\frac{7}{4}} = \frac{-3}{7}$$

3. (d) both a and c.

4. (b) Let $p(x) = 2x^2 + 2ax + 5x + 10$

As $(x + a)$ is a factor of $p(x)$,

$$\therefore p(-a) = 0$$

$$2a^2 - 2a^2 - 5a + 10 = 0$$

$$5a = 10$$

$$a = 2$$

5. (b) If $c = 0$,

$$\text{Discriminant (D)} = b^2 - 4a(0)$$

< 0 (as $f(x)$ has no real zeroes)

$$\Rightarrow b^2 < 0 \text{ not possible}$$

$$\text{So, } c \neq 0$$

$$\text{If } c > 0$$

In the discriminant, b^2 is positive. Discriminant (D) will be negative only if $a > 0$

Consider $a + b + c < 0$

$$\Rightarrow b < -a - c$$

$$\Rightarrow -b > a + c$$

$$\Rightarrow b^2 > (a + c)^2 = a^2 + c^2 + 2ac$$

$$\Rightarrow b^2 - 4ac > a^2 + c^2 - 2ac$$

$$\Rightarrow b^2 - 4ac > (a - c)^2 \geq 0$$

Discriminant cannot be negative and positive simultaneously.

$\therefore a$ cannot be greater than 0.

$\Rightarrow c$ cannot be greater than 0.

So, only possibility is $c < 0$

WORKSHEET 1

Section A

1. $b^2 - 4ac = 0$

$f(x)$ has two equal zeroes

2. A quadratic polynomial is of form

$$k \{x^2 - (\text{sum of zeroes})x + \text{product of zeroes}$$

$$= k \left\{ x^2 - \left(\frac{-1}{2} \right) x + (-3) \right\}$$

$$= \frac{k}{2} \{2x^2 + x - 6\}$$

3. Let $p(x) = x^4 + x^3 - 2x^2 + x + 1$

Remainder is $p(1) = 1 + 1 - 2 + 1 + 1 = 2$

4. A binomial of degree 6 is $x^6 + 4x^2$

5. $3x^3 - x^2 - 3x + 1$

$$= x^2 (3x - 1) - 1 (3x - 1)$$

$$= (x^2 - 1) (3x - 1)$$

$$= (x + 1) (x - 1) (3x - 1)$$

6. $a + b = 11$, $ab = 30$

$$a^3 + b^3 = (a + b)(a^2 + b^2 - ab)$$

$$= (a + b) [a + b]^2 - 3ab]$$

$$= 11 (121 - 90)$$

$$= 11 (31)$$

$$= 341$$

$$\begin{aligned} 7. \quad f(x) &= 6x^2 - 3 - 7x \\ &= 6x^2 - 7x - 3 \\ &= 6x^2 - 9x + 2x - 3 \\ &= 3x(2x - 3) + 1(2x - 3) \\ &= (2x - 3)(3x + 1) \end{aligned}$$

$$\text{Now, } f(x) = 0 \Rightarrow x = \frac{3}{2}, \frac{-1}{3}.$$

$$\text{So, zeroes are } x = \frac{3}{2}, \frac{-1}{3}$$

$$8. \quad p(x) = 4x^2 - 5x - 1$$

$$\alpha + \beta = \frac{5}{4}, \quad \alpha\beta = \frac{-1}{4}$$

$$\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta) = \frac{-1}{4} \left(\frac{5}{4} \right) = \frac{-5}{16}$$

$$9. \quad f(x) = 6x^3 + 3x^2 - 5x + 1$$

$$\alpha + \beta + \gamma = \frac{-3}{6} = \frac{-1}{2}$$

$$\alpha\beta\gamma = \frac{-1}{6}$$

$$\text{So, } \alpha^{-1}\beta^{-1}\gamma^{-1} = \frac{1}{\alpha\beta\gamma} = -6$$

$$\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2$$

$$= \alpha\beta\gamma(\alpha + \beta + \gamma)$$

$$= \frac{-1}{6} \left(\frac{-1}{2} \right) = \frac{1}{12}$$

Section B

$$10. \quad \text{Dividend} = \text{Divisor} \times \text{Quotient} + \text{Remainder}$$

$$\begin{aligned} x^3 + 2x^2 + 4x + b &= (x + 1)(x^2 + ax + 3) \\ &+ (2b - 3) \end{aligned}$$

$$= (x^3 + ax^2 + 3x + x^2 + ax + 3 + 2b - 3)$$

On comparing coefficients of x^2 and constant terms we get,

$$a + 1 = 2 \Rightarrow a = 1$$

$$b = 3 + 2b - 3 \Rightarrow b = 0$$

$$11. \quad p(x) = 3x^2 - 6x + 4$$

$$\alpha + \beta = 2, \quad \alpha\beta = \frac{4}{3}$$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2 \left(\frac{1}{2} + \frac{1}{\beta} \right) + 3\alpha\beta$$

$$= \frac{\alpha^2 + \beta^2}{\alpha\beta} + 2 \left(\frac{\alpha + \beta}{\alpha\beta} \right) + 3\alpha\beta$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} + 2 \left(\frac{\alpha + \beta}{\alpha\beta} \right) + 3\alpha\beta$$

$$= \frac{4 - \frac{8}{3}}{\frac{4}{3}} + 2 \left(\frac{\frac{2}{4}}{\frac{4}{3}} \right) + 3 \left(\frac{4}{3} \right)$$

$$= 1 + 3 + 4$$

$$= 8$$

$$12. \quad \text{Let the zeroes be } \alpha, \frac{1}{\alpha}$$

$$\alpha + \frac{1}{\alpha} = \frac{-13}{a^2 + 9}, \quad \alpha \frac{1}{\alpha} = \frac{6a}{a^2 + 9}$$

$$\begin{aligned} \text{So, } 1 &= \frac{6a}{a^2 + 9} \Rightarrow a^2 - 6a + 9 = 0 \\ a^2 - 3a - 3a + 9 &= 0 \end{aligned}$$

$$a(a - 3) - 3(a - 3) = 0$$

$$(a - 3)(a - 3) = 0$$

$$a = 3$$

$$13. \quad \text{Let the two zeroes of the } f(t) = kt^2 + 2t + 3k \text{ be } \alpha \text{ and } \beta.$$

$$\text{Sum of zeroes } (\alpha + \beta)$$

$$\text{Product of the zeroes } \alpha\beta$$

$$\begin{aligned} \frac{-2}{k} &= \frac{3k}{k} \\ -2k &= 3k^2 \end{aligned}$$

$$2k + 3k^2 = 0$$

$$k(3k + 2) = 0$$

$$k = 0$$

$$k = \frac{-2}{3}$$

14.

$$\begin{array}{r}
 2x^2 + 2x - 1 \\
 \hline
 4x^2 + 3x - 2 \overbrace{\quad\quad\quad}^{8x^4 + 14x^3 - 2x^2 + 8x - 12} \\
 \hline
 8x^4 + 6x^3 - 4x^2 \\
 \hline
 \begin{array}{r}
 - - + \\
 \hline
 8x^3 + 2x^2 + 8x - 12
 \end{array} \\
 \hline
 \begin{array}{r}
 8x^3 + 6x^2 - 4x \\
 \hline
 - - + \\
 \hline
 - 4x^2 + 12x - 12
 \end{array} \\
 \hline
 \begin{array}{r}
 - 4x^2 - 3x + 2 \\
 \hline
 + + - \\
 \hline
 15x - 14
 \end{array}
 \end{array}$$

15. Cubic polynomial is of form

$$\begin{aligned}
 & \{x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma\} \\
 & = k \{x^3 - (5 + 6 - 1)x^2 + (30 - 6 - 5)x - 30\} \\
 & = k \{x^3 - 10x^2 + 19x + 30\}
 \end{aligned}$$

16. Let the zeros of the polynomial be:

$a - d, a$ and $a + d$, so that the roots are in AP.
 $f(x) = x^3 + 3px^2 + 3qx + r$.

The standard form of a cubic equation is:

$$x^3 (a + b + c)x^2 + (ab + bc + ca)x - abc = 0.$$

Comparing this equation with the given polynomial:

We find:

$$\begin{aligned}
 3p &= -(a - d + a + a + d) \\
 \Rightarrow 3p &= -3a \\
 \Rightarrow p &= -a \\
 3q - (a - d)a + a(a + d) + (a + d)(a - d) \\
 \Rightarrow 3q &= a^2 - ad + a^2 + ad + a^2 - d^2 \\
 \Rightarrow 3q &= 3a^2 - d^2 \\
 \Rightarrow d^2 &= 3a^2 - 3q \\
 \text{or, } d^2 &= 3p^2 - 3q \\
 \text{And, } r &= -(a - d)a(a + d) \\
 \text{Or, } r &= ad^2 - a^3
 \end{aligned}$$

Or, $r = (-p)(3p^2 - 3q) - (-p)^3$

Or, $r = 3p^3 + 3pq + p^3$

Thus, $r = 3pq - 2p^3$.

Section C

17. $\alpha^2 + \beta^2$ can be written as $(\alpha + \beta)^2 - 2\alpha\beta$

$$p(x) = 2x^2 - 5x + 7$$

$$a = 2, b = -5, c = 7$$

α and β are the zeros of $p(x)$

We know that,

$$\text{Sum of zeros} = \alpha + \beta = \frac{-b}{a} = \frac{5}{2}$$

$$\text{Product of zeros} = \frac{c}{a} = \frac{7}{2}$$

$2\alpha + 3\beta$ and $3\alpha + 2\beta$ are zeros of a polynomial.

$$\text{Sum of zeros} = 2\alpha + 3\beta + 3\alpha + 2\beta$$

$$= 5\alpha + 5\beta$$

$$= 5[\alpha + \beta]$$

$$= 5 \times \frac{5}{2}$$

$$= \frac{25}{2}$$

$$\text{Product of zeros} = (2\alpha + 3\beta)(3\alpha + 2\beta)$$

$$= 2\alpha[3\alpha + 2\beta] + 3\beta[3\alpha + 2\beta]$$

$$= 6\alpha^2 + 4\alpha\beta + 9\alpha\beta + 6\beta^2$$

$$= 6\alpha^2 + 13\alpha\beta + 6\beta^2$$

$$= 6[\alpha^2 + \beta^2] + 13\alpha\beta$$

$$= 6[(\alpha + \beta)^2 - 2\alpha\beta] + 13\alpha\beta$$

$$= 6\left[\left(\frac{5}{2}\right)^2 - 2 \times \frac{7}{2}\right] + 13 \times \frac{7}{2}$$

$$= 6\left[\frac{25}{4} - 7\right] + \frac{91}{2}$$

$$= 6\left[\frac{25}{4} - \frac{28}{4}\right] + \frac{91}{2}$$

$$= 6\left[\frac{-3}{4}\right] + \frac{91}{2}$$

$$= \frac{-18}{4} + \frac{91}{2}$$

$$= \frac{-9}{2} + \frac{91}{2}$$

$$= \frac{82}{2}$$

$$= 41$$

$$\frac{-18}{4} = \frac{-9}{2} \quad [\text{Simplest form}]$$

a quadratic polynomial is given by :-

$$k \{ x^2 - (\text{sum of zeros})x + (\text{product of zeros}) \}$$

$$k \{ x^2 - \frac{5}{2x} + 4 \}$$

$$k = 2$$

$$2 \{ x^2 - \frac{5}{2x} + 4 \}$$

$2x^2 - 5x + 8$ is the required polynomial.

18. Dividend = Divisor \times Quotient + Remainder

$$x^4 + 2x^3 - 2x^2 + x - 1 = (x^2 + 2x - 3) \quad \text{Quotient} + \text{Remainder}$$

$$\begin{array}{r} x^2 + 1 \\ \hline x^2 + 2x - 3 \sqrt{ x^4 + 2x^3 - 2x^2 + x - 1 } \\ \hline x^4 + 2x^3 - 3x^2 \\ - - + \\ \hline x^2 + x - 1 \\ x^2 + 2x - 3 \\ - - + \\ \hline -x + 2 \end{array}$$

$$\text{So, } x^4 + 2x^3 - 2x^2 + x - 1 = (x^2 + 2x - 3)(x^2 + 1) + (-x + 2)$$

So, $-(-x + 2) = x - 2$ must be added to the polynomial $f(x)$.

19.

$$\begin{array}{r} 2x^2 + 5 \\ \hline 3x^2 + 4x + 1 \sqrt{ 6x^4 + 8x^3 + 17x^2 + 21x + 7 } \\ \hline 6x^4 + 8x^3 + 2x^2 \\ - - - \\ \hline 15x^2 + 21x + 7 \\ 15x^2 + 20x + 5 \\ - - - \\ \hline x + 2 \end{array}$$

On comparing $x + 2$ with $ax + b$, we get
 $a = 1$, $b = 2$

20. Let the quotient be $q(x) = ax^2 + bx + c$ and remainder $r(x) = px + q$

Using division algorithm,

$$f(x) = g(x)q(x) + r(x)$$

$$3x^4 + 5x^3 - 7x^2 + 2x + 2$$

$$= (x^2 + 3x + 1)(ax^2 + bx + c) + px + q$$

$$= ax^4 + bx^3 + cx^2 + 3ax^3 + 3bx^2 + 3cx + ax^2 + bx + c + px + q$$

$$a = 3$$

$$5 = b + 3a \Rightarrow b = 5 - 3a \Rightarrow b = -4$$

$$-7 = c + 3b + a$$

$$-7 = c - 12 + 3 \Rightarrow c = 2$$

$$2 = 3c + b + p$$

$$2 = 6 - 4 + p \Rightarrow p = 0$$

$$2 = q + c \Rightarrow q = 2 - 2 = 0$$

So, Remainder = $px + q = 0$

As remainder is zero, $g(x)$ is a factor of $p(x)$.

21. Let $f(x) = x^3 + 2x^2 + kx + 3$

$$\text{Remainder} = f(3) = 21$$

$$3^3 + 2(3)^2 + 3k + 3 = 21$$

$$27 + 18 + 3k + 3 = 21$$

$$3k = 21 - 48 = -27$$

$$k = -9$$

Now, we will find the quotient.

$$\text{Dividend} = x^3 + 2x^2 + kx + 3$$

$$= x^3 + 2x^2 - 9x + 3$$

$$\text{Divisor} = x - 3$$

$$\begin{array}{r} x^2 + 5x + 6 \\ \hline x - 3 \sqrt{ x^3 + 2x^2 - 9x + 3 } \\ \hline x^3 - 3x^2 \\ - + \\ \hline 5x^2 - 9x + 3 \\ 5x^2 - 15x \\ - + \\ \hline 6x + 3 \\ 6x - 18 \\ - + \\ \hline 21 \end{array}$$

So, quotient = $x^2 + 5x + 6$

22. Zeroes are $-\sqrt{3}$ and $\sqrt{3}$

So, factors are $(x + \sqrt{3})$, $(x - \sqrt{3})$

i.e. $(x + \sqrt{3})(x - \sqrt{3})$ is also a factor

i.e. $x^2 - 3$ is a factor of given polynomial.

$$\begin{array}{r} 2x + 1 \\ \hline x^2 - 3 \sqrt{2x^3 + x^2 - 6x - 3} \\ \hline 2x^3 \quad - 6x \\ \hline x^2 - 3 \\ \hline x^2 - 3 \\ \hline 0 \end{array}$$

For the remaining zero,

put $2x + 1 = 0$

$$x = \frac{-1}{2}$$

23. As $\sqrt{2}$ is a zero of given polynomial, $x - \sqrt{2}$ is a factor of the polynomial.

$$\begin{array}{r} 6x^2 + 7\sqrt{2}x + 4 \\ \hline x - \sqrt{2} \sqrt{6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}} \\ \hline 6x^3 - 6\sqrt{2}x^2 \\ \hline + \\ \hline 7\sqrt{2}x^2 - 10x \\ \hline 7\sqrt{2}x^2 - 14x \\ \hline - \\ \hline 4x - 4\sqrt{2} \\ \hline 4x - 4\sqrt{2} \\ \hline - \\ \hline 0 \end{array}$$

For other zeroes,

$$6x^2 + 7\sqrt{2}x + 4 = 0$$

$$6x^2 + 3\sqrt{2}x + 4\sqrt{2}x + 4 = 0$$

$$3x(2x + \sqrt{2}) + 4\sqrt{2}x + 4 = 0$$

$$3\sqrt{2}x(\sqrt{2}x + 1) + 4(\sqrt{2}x + 1) = 0$$

$$(3\sqrt{2}x + 4)(\sqrt{2}x + 1) = 0$$

$$x = \frac{-4}{3\sqrt{2}} = \frac{-4\sqrt{2}}{6} = \frac{-2\sqrt{2}}{3}$$

$$\text{and } x = \frac{-1}{\sqrt{2}} = \frac{-\sqrt{2}}{2}$$

24. According to division algorithm,

$$\text{Dividend} = \text{Divisor} \times \text{Quotient} + \text{Remainder}$$

$$x^3 - 3x^2 + x + 2 = g(x)(x - 2) + (-2x + 4)$$

$$\begin{array}{r} x^3 - 3x^2 + x + 2 + 2x - 4 \\ \hline x - 2 \\ \hline x^3 - 3x^2 + 3x - 2 \\ \hline x^3 - 2x^2 \\ \hline - + \\ \hline -x^2 + 3x - 2 \\ \hline -x^2 + 2x \\ \hline + - \\ \hline x - 2 \\ \hline - + \\ \hline 0 \end{array}$$

$$\text{So, } g(x) = x^2 - x + 1$$

Section D

25. $f(x) = x^2 - px + q$

$$\alpha + \beta = p, \quad \alpha\beta = q$$

Consider

LHS

$$\begin{aligned} \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} &= \frac{\alpha^4 + \beta^4}{\alpha^2\beta^2} \\ &= \frac{(\alpha^2)^2 + (\beta^2)^2}{\alpha^2\beta^2} \\ &= \frac{[\alpha^2 + \beta^2]^2 - 2\alpha^2\beta^2}{(\alpha\beta)^2} \\ &= \frac{[(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)^2}{(\alpha\beta)^2} \\ &= \frac{[p^2 - 2q]^2 - 2(q)^2}{(q)^2} \\ &= \frac{p^4 + 4q^2 - 4p^2q - 2q^2}{q^2} \end{aligned}$$

$$= \frac{p^4}{q^2} - \frac{4p^2}{q} + 2 = \text{RHS}$$

26. Let $p(x) = x^3 - 2x^2 + qx - r$

$$\alpha + \beta + \gamma = 2$$

$$\text{For } \alpha + \beta = 0 \Rightarrow 0 + r = 2 \\ \Rightarrow r = 2$$

$$\text{Also, } \alpha\beta\gamma = r$$

$$2\alpha\beta = r$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = q$$

$$\alpha\beta + \gamma(\alpha + \beta) = q$$

$$\alpha\beta + \gamma(0) = q \quad [\text{As } \alpha + \beta = 0]$$

$$\alpha\beta = q$$

$$\frac{r}{2} = q$$

$$2q = r$$

27. $2x^2 - 3x + (-8 - 2k)$

$$\begin{array}{r} x^2 + 2x + k \sqrt{2x^4 + x^3 - 14x^2 + 5x + 6} \\ \hline 2x^4 + 4x^3 + 2kx^2 \\ \hline -3x^3 + x^2(-14 - 2k) + 5x + 6 \\ -3x^3 - 6x^2 \quad \quad \quad -3kx \\ \hline + \quad + \quad + \\ x^2(-8 - 2k) + x(5 + 3k) + 6 \\ x^2(-8 - 2k) \quad \quad \quad - \\ \hline x(5 + 3k + 16 + 4k) + 6 + 8k + 2k^2 \end{array}$$

$$\text{Remainder} = (21 + 7k)x + 6 + 8k + 2k^2$$

As $x^2 + 2x + k$ is a factor of

$$2x^4 + x^3 - 14x^2 + 5x + 6,$$

So, Remainder should be zero

$$(21 + 7k)x + 6 + 8k + 2k^2 = 0 \\ = 0x + 0$$

On comparing coefficient of x, we get

$$21 + 7k = 0$$

$$k = -3$$

Now, we will find zeroes of the two polynomials.

$$2x^4 + x^3 - 14x^2 + 5x + 6$$

$$= (x^2 + 2x + k) [2x^2 - 3x + (-8 - 2k)]$$

$$\begin{aligned} &= (x^2 + 2x - 3)(2x^2 - 3x - 2) \\ &= (x^2 + 3x - x - 3)(2x^2 - 4x + x - 2) \\ &= [x(x + 3) - 1(x + 3)][2x(x - 2) + 1(x - 2)] \\ &= (x + 3)(x - 1)(2x + 1)(x - 2) \end{aligned}$$

$$\text{So, zeroes are } -3, 1, \frac{-1}{2}, 2$$

Again consider $x^2 + 2x + k$

$$\begin{aligned} &= x^2 + 2x - 3 \\ &= x^2 + 3x - x - 3 \\ &= x(x + 3) - 1(x + 3) \\ &= (x - 1)(x + 3) \end{aligned}$$

So, zeroes are 1, -3.

28. $f(x) = x^2 - 2x + 3$

$$\alpha + \beta = 2$$

$$\alpha\beta = 3$$

(a) Roots are $(\alpha + 2, \beta + 2)$

Polynomial is

$$\begin{aligned} &k\{x^2 - (\text{sum of zeroes})x + \text{product of zeroes}\} \\ &= k\{x^2 - (\alpha + 2 + \beta + 2)x + (\alpha + 2)(\beta + 2)\} \\ &= k\{x^2 - (\alpha + \beta + 4)x + \alpha\beta + 2(\alpha + \beta) + 4\} \\ &= k\{x^2 - (2 + 4)x + 3 + 2(2) + 4\} \\ &= k\{x^2 - 6x + 11\} \end{aligned}$$

(b) Sum of zeroes

$$\begin{aligned} &= \frac{\alpha - 1}{\alpha + 1} + \frac{\beta - 1}{\beta + 1} \\ &= \frac{(\alpha - 1)(\beta + 1) + (\alpha + 1)(\beta - 1)}{(\alpha + 1)(\beta - 1)} \\ &= \frac{\alpha\beta + \alpha - \beta - 1 + \alpha\beta - \alpha + \beta - 1}{\alpha\beta + \alpha + \beta + 1} \\ &= \frac{2\alpha\beta - 2}{\alpha\beta + \alpha + \beta + 1} \\ &= \frac{6 - 2}{3 + 2 + 1} \\ &= \frac{4}{6} = \frac{2}{3} \end{aligned}$$

As
 $\alpha + \beta = 2$
 $\alpha\beta = 3$

$$\begin{aligned}
 \text{Product of zeroes} &= \left(\frac{\alpha-1}{\alpha+1} \right) \left(\frac{\beta-1}{\beta+1} \right) \\
 &= \frac{(\alpha-1)(\beta-1)}{(\alpha+1)(\beta+1)} \\
 &= \frac{\alpha\beta - (\alpha+\beta) + 1}{\alpha\beta + (\alpha+\beta) + 1} \\
 &= \frac{3-2+1}{3+2+1} \\
 &= \frac{2}{6} \\
 &= \frac{1}{3}
 \end{aligned}$$

A quadratic polynomial is of form

$$\begin{aligned}
 k \{x^2 - (\text{sum of zeroes})x + \text{product of zeroes}\} \\
 &= \left\{ x^2 - \frac{-2}{3}x + \frac{1}{3} \right\} \\
 &= \frac{k}{3} \{3x^2 - 2x + 1\}
 \end{aligned}$$

29.

$$\begin{array}{r}
 x^2 - 2\sqrt{5}x + 3 \\
 \times -\sqrt{5} \sqrt{x^3 - 3\sqrt{5}x^2 + 13x - 3\sqrt{5}} \\
 \hline
 x^3 - \sqrt{5}x^2 \\
 + \\
 \hline
 -2\sqrt{5}x^2 + 13x - 3\sqrt{5} \\
 -2\sqrt{5}x^2 + 10x \\
 + \\
 \hline
 3x - 3\sqrt{5} \\
 3x - 3\sqrt{5} \\
 - \\
 \hline
 0
 \end{array}$$

For other zeroes,

$$\text{Consider } x^2 - 2\sqrt{5}x + 3 = 0$$

$$\begin{aligned}
 x &= \frac{2\sqrt{5} \pm \sqrt{20-12}}{2} \\
 &= \frac{2\sqrt{5} \pm \sqrt{8}}{2}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{2\sqrt{5} \pm 2\sqrt{2}}{2} \\
 &= \sqrt{5} \pm \sqrt{2}
 \end{aligned}$$

$$30. \ ax^3 + 3x^2 - bx - 6$$

$$x = -1, -2$$

Put the values of x in Equation
We get,

$$a(-1)^3 + 3(-1)^2 - b(-1) - 6 = 0$$

$$\Rightarrow -a + 3 + b - 6 = 0$$

$$\Rightarrow b - a = 3 \quad \dots \dots \dots (1)$$

$$\text{Now } x = -2$$

$$a(-2)^3 + 3(-2)^2 - b(-2) - 6 = 0$$

$$\Rightarrow -8a + 12 + 2b - 6 = 0$$

$$\Rightarrow 2b - 8a + 6 = 0$$

$$\Rightarrow b - 4a = -3 \quad \dots \dots \dots (2)$$

from (1) and (2)

$$b - a = 3$$

$$b - 4a = -3$$

$$- + +$$

$$3a = 6$$

$$\Rightarrow a = 2 \text{ put in} \quad \dots \dots \dots (1)$$

$$b - 3 = 2$$

$\Rightarrow b = 5$ now put this value in Equation

$$ax^3 + 3x^2 - bx - 6 = 0$$

$$\Rightarrow 2x^3 + 3x^2 - 5x - 6 = 0$$

Two zeroes are given $(-1, -2)$

$$(x+1)(x+2) = x^2 + 2x + x + 2 = 0$$

$$\Rightarrow x^2 + 3x + 2 = 0$$

$$\begin{array}{r}
 2x - 3 \\
 \hline
 x^2 + 3x + 2 \sqrt{2x^3 + 3x^2 - 5x - 6} \\
 \hline
 2x^3 + 6x^2 + 4x \\
 - - - \\
 -3x^2 - 9x - 6 \\
 -3x^2 - 9x - 6 \\
 + + + \\
 \hline
 000
 \end{array}$$

Hence, another zeroes is

$$2x - 3 = 0$$

$$\Rightarrow x = \frac{3}{2}$$

31. As zeroes of $q(x)$ are also the zeroes of $p(x)$, so, remainder should be zero. (As $q(x)$ is a

factor of $p(x)$

$$\begin{array}{r}
 x^2 - 3x + 2 \\
 \hline
 x^3 + 2x^2 + a \overline{)x^5 + x^4 - 4x^3 + 3x^2 + 3x + b} \\
 - x^5 - 2x^4 - ax^2 \\
 \hline
 - 3x^4 - 4x^3 + (3-a)x^2 + 3x + b \\
 - 3x^4 - 6x^3 + 3ax \\
 \hline
 2x^3 + (3-a)x^2 + (3+3a)x + b \\
 2x^3 + 4x^2 + 2a \\
 \hline
 (-a-1)x^2 + (3+3a)x + (b-2a)
 \end{array}$$

Remainder = 0

$$(-a-1)x^2 + (3+3a)x + (b-2a) = 0$$

$$\Rightarrow -a-1 = 0, \quad b-2a = 0$$

$$\Rightarrow a = -1, \quad b + 2 = 0$$

$$\Rightarrow a = -1, \quad b = -2$$

Now,

$$\begin{aligned}
 p(x) &= (x^3 + 2x^2 - 1)(x^2 - 3x + 2) + 0 \\
 &= (x^3 + 2x^2 - 1)(x^2 - 3x + 2)
 \end{aligned}$$

For other zeroes of $p(x)$,

$$\text{Put } x^2 - 3x + 2 = 0$$

$$x^2 - 2x - x + 2 = 0$$

$$x(x-2) - 1(x-2) = 0$$

$$(x-1)(x-2) = 0$$

$$x = 1, 2$$

So, $x = 1, 2$ are zeroes of $p(x)$ but not of $q(x)$

$$32. \text{ (i) } p(x) = x^3 - 5x^2 - 16x + 80$$

Let the two zeroes be $\alpha, -\alpha$ and the third zero be γ .

$$\alpha + (-\alpha) + \gamma = 5$$

$$\gamma = 5$$

$$\text{Also } \alpha(-\alpha)\gamma = -80$$

$$-\alpha^2(5) = -80$$

$$\alpha^2 = \frac{80}{5} = 16$$

$$\alpha = \pm 4$$

$$\text{For } \alpha = -4, \quad -\alpha = -(-4) = 4$$

$$\text{For } \alpha = 4, \quad -\alpha = -4.$$

So, zeroes are $-4, 4, 5$

$$\begin{aligned}
 \text{(ii)} \quad f(x) &= x^2 - p(x+1) - c \\
 &= x^2 - px - (p+c) \\
 \alpha + \beta &= p, \quad \alpha\beta = -(p+c)
 \end{aligned}$$

Consider

$$\begin{aligned}
 (\alpha+1)(\beta+1) &= \alpha\beta + (\alpha+\beta) + 1 \\
 &= -(p+c) + p + 1 \\
 &= 1 - c
 \end{aligned}$$

WORKSHEET 2

Section A

1. $f(x)$ has 2 real zeroes.

$$2. \quad x^2 + 7x + 12$$

$$= x^2 + 3x + 4x + 12$$

$$= x^2 + (x+3) + 4(x+3)$$

$$= (x+3)(x+4)$$

For zeroes of polynomial,

$$x+3=0, \quad x+4=0$$

$$x = -3, \quad x = -4$$

3. Let $a, \frac{1}{\alpha}$ be the zeroes of $p(x)$

$$\alpha \frac{1}{\alpha} = \frac{-a}{5}$$

$$1 = \frac{-a}{5}$$

$$a = -5$$

4. $f(x)$ has 2 distinct real zeroes

5. Let $p(x) = x^3 + ax^2 + bx + c$

Let α, β, γ be zeroes of $p(x)$

Such that $\alpha = -1$

$$\alpha\beta\gamma = -C$$

$$(-1)\beta\gamma = -C$$

$$\beta\gamma = C$$

So, product of other two zeroes = C

6. Quadratic polynomial is of form

$k \{x^2 - (\text{Sum of zeroes})x + \text{product of zeroes}\}$

$$= k \left\{ x^2 - \left(\frac{2}{3} - \frac{1}{4} \right)x + \frac{2}{3} \left(\frac{-1}{4} \right) \right\}$$

$$= k \left\{ x^2 - \left(\frac{5}{12} \right)x - \frac{1}{6} \right\}$$

$$= k \left\{ \frac{12x^2 - 5x - 2}{12} \right\}$$

$$= \frac{k}{12} (12x^2 - 5x - 2)$$

7. $2y^2 + 7y + 5 = 0$

Here $a = 2, b = 7, c = 5$

α, β are 2 zeroes

$$\text{So sum of the zeroes} = \alpha + \beta = \frac{-b}{ca} = \frac{-7}{2}$$

$$\text{Product of zeroes} = \alpha\beta = \frac{c}{a} = \frac{5}{2}$$

Now just put the values

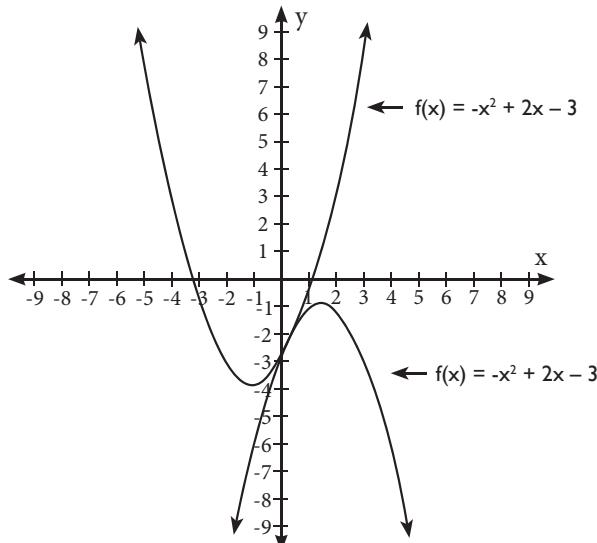
$$\alpha + \beta + \alpha\beta = (c + \beta) + \alpha\beta$$

$$= \frac{-7}{2} + \frac{5}{2}$$

$$= \frac{-2}{2} = -1$$

So required answer is -1

8.



In the above graph, for both the curves we can observe that the sign of c is negative only.

9. $f(x) = (k^2 + 4)x^2 + 13x + 4k$

Let the two zeroes be $\alpha, \frac{1}{\alpha}$

$$1 = \alpha \left(\frac{1}{\alpha} \right) = \frac{4k}{k^2 + 4}$$

$$k^2 - 4k + 4 = 0$$

$$(k - 2)^2 = 0$$

$$k = 2$$

10. $x^2 + 99x + 127$

$$\alpha + \beta = -99, \quad \alpha\beta = 127$$

α, β are either both positive or both negative

If α, β are both positive then $\alpha + \beta = -99$ is not possible

So, α and β must be negative.

Section B

11. $f(x) = x^2 - px + q$

$$\alpha + \beta = p, \quad \alpha\beta = q$$

$$\begin{aligned} \text{(i) Consider } \alpha^2 + \beta^2 &= (\alpha + \beta)^2 - 2\alpha\beta \\ &= p^2 - 2q \end{aligned}$$

$$\text{(ii) } \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{p}{q}$$

12. We know that,

$$\text{Sum of zeroes} = \frac{-b}{a}$$

$$\alpha + \beta = 5 \quad \text{-----(1)}$$

also,

$$\text{Product of zeroes} = \frac{c}{a}$$

$$\alpha\beta = k \quad \text{-----(2)}$$

Given:

$$\alpha - \beta = 1 \quad \text{-----(3)}$$

From (1) and (3)

$$\alpha + \beta = 5$$

$$\alpha - \beta = 1 \quad \text{(on adding)}$$

$$\underline{2\alpha = 6}$$

$$\alpha = 3$$

Put this in (3)

$$3 - \beta = 1$$

$$-\beta = -2$$

$$\beta = 2$$

Now put this value in (3)

$$\begin{aligned}\alpha\beta &= k \\ 2 \times 3 &= k \\ 6 &= k\end{aligned}$$

13. Quadratic polynomial is of form

$$k \{x^2 - (\text{sum of zeroes})x + \text{Product of zeroes}\}$$

$$\begin{aligned}\text{Sum of zeroes} &= \frac{4+\sqrt{2}}{2} + \frac{4-\sqrt{2}}{2} \\ &= 4\end{aligned}$$

$$\begin{aligned}\text{Product of zeroes} &= \left(\frac{4+\sqrt{2}}{2}\right) \left(\frac{4-\sqrt{2}}{2}\right) \\ &= \frac{16-2}{4} = \frac{14}{4} = \frac{7}{2}\end{aligned}$$

So, quadratic polynomial is

$$\begin{aligned}k \left\{x^2 - 4x + \frac{7}{2}\right\} \\ = \frac{k}{2} \{2x^2 - 8x + 7\}\end{aligned}$$

14.

$$\begin{array}{r} 3x^2 - x \\ \hline 3x^2 + x - 1 \end{array} \overbrace{\begin{array}{r} 9x^4 - 4x^2 + 4 \\ 9x^4 + 3x^3 - 3x^2 \\ - \quad - \quad + \\ \hline - 3x^3 - x^2 + 4 \\ - 3x^3 - x^2 + 4 \\ + \quad + \quad - \\ \hline - x + 4 \end{array}}$$

$$\text{Quotient} = 3x^2 - x$$

$$\text{Remainder} = -x + 4$$

$$15. f(x) = x^2 - 1 = x^2 + 0x - 1$$

$$\alpha + \beta = 0, \quad \alpha\beta = -1$$

$$\begin{aligned}\text{Sum of zeroes} &= \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} \\ &= 2 \left(\frac{\alpha^2 + \beta^2}{\alpha\beta} \right) \\ &= 2 \left[\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} \right]\end{aligned}$$

$$= \frac{2}{-1} [0 + 2] = -4$$

$$\text{Product of zeroes} = \frac{2\alpha}{\beta} \cdot \frac{2\beta}{\alpha} = 4$$

A quadratic polynomial is of form $k \{x^2 - (\text{sum of zeroes})x + \text{product of zeroes}\}$

$$k \{x^2 + 4x + 4\}$$

$$16. f(x) = ax^2 + bx + c$$

$$\begin{aligned}\alpha + \beta &= \frac{-b}{a}, \quad \alpha\beta = \frac{c}{a} \\ \text{Consider } \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} &= \frac{\alpha^2 + \beta^2}{\alpha\beta} \\ &= \frac{(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)}{\alpha\beta} \\ &= \frac{(\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta]}{\alpha\beta} \\ &= \frac{-b}{a} \left[\frac{b^2}{a^2} - \frac{3c}{a} \right] \\ &= \frac{c}{a} \\ &= \frac{-b}{c} \left(\frac{b^2 - 3ac}{a^2} \right)\end{aligned}$$

17. As 1 is a zero of $f(x)$,

so, $(x - 1)$ is a factor of $f(x)$

$$\begin{array}{r} -x^2 - x + 6 \\ \hline x - 1 \end{array} \overbrace{\begin{array}{r} -x^3 + 7x + 6 \\ -x^3 + x^2 \\ + \quad - \\ \hline -x^2 + 7x - 6 \\ -x^2 + x \\ + \quad - \\ \hline 6x - 6 \\ 6x - 6 \\ - \quad + \\ \hline 0 \end{array}}$$

For other zeroes of $f(x)$,

$$\text{put } -x^2 - x + 6 = 0$$

$$x^2 + x - 6 = 0$$

$$\begin{aligned}
 x^2 + 3x - 2x - 6 &= 0 \\
 x(x+3) - 2(x+3) &= 0 \\
 (x-2)(x+3) &= 0 \\
 x &= 2, -3
 \end{aligned}$$

So, other zeroes are $x = 2, -3$

18. $f(x) = x^2 - 13x + k$

Let α, β be two zeroes of $f(x)$

$$\alpha\beta = k = 40$$

So, $f(x) = x^2 - 13x + 40$

$$\begin{aligned}
 &= x^2 - 5x - 8x + 40 \\
 &= x(x-5) - 8(x-5) \\
 &= -(x-5)(x-8)
 \end{aligned}$$

For zeroes of $f(x)$, put $f(x) = 0$

i.e. $(x-5)(x-8) = 0$

$$x = 5, 8$$

19.
$$\frac{2x^2 - 2x - 1}{4x^2 + 3x - 2}$$

$$\begin{array}{r}
 8x^4 + 14x^3 - 2x^2 + 7x - 8 \\
 \hline
 8x^4 + 6x^3 - 4x^2 \\
 \hline
 8x^3 + 2x^2 + 7x - 8 \\
 \hline
 8x^3 + 6x^2 - 4x \\
 \hline
 -4x^2 + 11x - 8 \\
 \hline
 -4x^2 + 4x + 2 \\
 \hline
 15x - 10
 \end{array}$$

So, $15x - 10$ must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 8$. So, that the resultant polynomial is exactly divisible by $4x^2 + 3x - 2$.

20. $f(t) = t^2 - 4t + 3$

$$\alpha + \beta = 4, \quad \alpha\beta = 3$$

Consider

$$\begin{aligned}
 \alpha^4\beta^3 + \alpha^3\beta^4 &= \alpha^3\beta^3(\alpha + \beta) \\
 &= (\alpha\beta)^3(\alpha + \beta)
 \end{aligned}$$

$$= 27(4) = 108$$

And $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{4}{3}$

Section C

21. Let $a - d, a$ and $a + d$ be the zeroes of $f(x)$

$$a - d + a + a + d = 12$$

$$3a = 12$$

$$a = 4$$

$$\text{Also, } (a-d)a(a+d) = 28$$

$$(4-d)4(4+d) = 28$$

$$16 - d^2 = 7$$

$$d^2 = 9$$

$$d = \pm 3$$

Case 1

$$a = 4, \quad d = 3$$

So, zeroes are

Case 2

$$a = 4, \quad d = -3$$

So, zeroes are 7, 4, 1

$$a - d, a, a + d = 1, 4, 7$$

Therefore, zeroes of polynomial are 1, 4 and 7.

22.

$$\begin{array}{r}
 10x^2 + \frac{19}{3}x - \frac{8}{9} \\
 \hline
 3x^2 - x + 1 \quad \left| \begin{array}{r} 30x^4 + 9x^3 + x^2 + 2 \\ 30x^4 - 10x^3 + 10x^2 \\ \hline 19x^3 - 9x^2 + 2 \end{array} \right. \\
 \hline
 19x^3 - \frac{19}{3}x^2 + \frac{19}{3}x \\
 \hline
 - \frac{8}{3}x^2 - \frac{19}{3}x + 2 \\
 - \frac{8}{3}x^2 + \frac{8}{9}x - \frac{8}{9} \\
 \hline
 - \frac{65}{9}x + \frac{26}{9}
 \end{array}$$

$$\text{Dividend} = 30x^4 + 9x^3 + x^2 + 2$$

$$\text{Divisor} = 3x^2 - x + 1$$

$$\text{Quotient} = 10x^2 + \frac{19}{3}x - \frac{8}{9}$$

$$\text{Remainder} = -\frac{65}{9}x + \frac{26}{9}$$

According to divisor algorithm,

Dividend = Divisor \times Quotient + Remainder

Consider

Divisor \times Quotient + Remainder

$$\begin{aligned} &= (3x^2 - x + 1) \left(10x^2 + \frac{19}{3}x - \frac{8}{9} \right) - \frac{8x}{9} - \frac{31}{9} \\ &= 30x^4 + 19x^3 - \frac{8}{3}x^2 - 10x^3 - \frac{19}{3}x^2 + \frac{8}{9}x + \\ &\quad 10x^2 + \frac{19}{3}x - \frac{8}{9} - \frac{65}{9}x + \frac{26}{9} \\ &= 30x^4 + x^3(19 - 10) + x^2 \left(-\frac{8}{3} - \frac{19}{3} + 10 \right) + \\ &\quad x \left(\frac{8}{9} + \frac{19}{3} - \frac{65}{9} \right) + \left(-\frac{8}{9} + \frac{26}{9} \right) \\ &= 30x^4 + 9x^3 + x^2 + 0x + 2 \\ &= 30x^4 + 9x^3 + x^2 + 2 \\ &= \text{Dividend} \quad \text{Hence verified.} \end{aligned}$$

23. $f(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$

$$\text{Sum} = 5(8 - 3)$$

$$\text{Product} = -24 \quad (8 \times -3)$$

$$\begin{aligned} f(x) &= 4\sqrt{3}x^2 + 8x - 3x - 2\sqrt{3} \\ &= 4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2) \\ &= (4x - \sqrt{3})(\sqrt{3}x + 2) \end{aligned}$$

For zeroes of $f(x)$, put $f(x) = 0$

$$(4x - \sqrt{3})(\sqrt{3}x + 2) = 0$$

$$x = \frac{\sqrt{3}}{4}, \frac{-2}{\sqrt{3}}$$

$$\text{Sum of zeroes} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$\begin{aligned} &= \frac{\sqrt{3}}{4} - \frac{2}{\sqrt{3}} \\ &= \frac{3 - 8}{4\sqrt{3}} \end{aligned}$$

$$\therefore \text{Sum of zeroes} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$\begin{aligned} \text{Product of zeroes} &= \left(\frac{\sqrt{3}}{4} \right) \left(\frac{-2}{\sqrt{3}} \right) \\ &= -\frac{1}{2} \end{aligned}$$

Constant term

$\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

$$= -\frac{2\sqrt{3}}{4\sqrt{3}}$$

$$= -\frac{1}{2}$$

$$\therefore \text{Product of zeroes} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Hence, the relationship between zeroes and its coefficient is verified.

24. $f(x) = x^2 - x - 2$

$$\alpha + \beta = 1, \quad \alpha\beta = -2$$

$$\begin{aligned} \text{Sum of zeroes} &= 2\alpha + 1 + 2\beta + 1 \\ &= 2(\alpha + \beta) + 2 \\ &= 2(1) + 2 \\ &= 4 \end{aligned}$$

$$\text{Product of zeroes} = (2\alpha + 1)(2\beta + 1)$$

$$\begin{aligned} &= 4\alpha\beta + 2(\alpha + \beta) + 1 \\ &= -8 + 2 + 1 \\ &= -5 \end{aligned}$$

Quadratic polynomial is of form

$$k\{x^2 - (\text{sum of zeroes})x + \text{Product of zeroes}\}$$

$$= k\{x^2 - 4x - 5\}$$

Now, we need to find $\alpha^3 + \beta^3$

$$\begin{aligned} &= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) \\ &= (\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta] \\ &= 4(16 + 15) \\ &= 4(31) \\ &= 124 \end{aligned}$$

25. $f(x) = 3x^2 - 4x + 1$

$$\alpha + \beta = \frac{4}{3}, \quad \alpha\beta = \frac{1}{3}$$

$$\begin{aligned}\text{Sum of zeroes} &= \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} \\ &= \frac{\alpha^3 + \beta^3}{\alpha\beta} \\ &= \frac{(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)}{\alpha\beta} \\ &= \frac{(\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta]}{\alpha\beta} \\ &= \frac{4\left(\frac{16}{9} - 1\right)}{\frac{1}{3}} \\ &= 4\left(\frac{16 - 9}{9}\right) = \frac{28}{9}\end{aligned}$$

$$\text{Product of zeroes} = \frac{\alpha^2\beta^2}{\alpha\beta} = \alpha\beta = \frac{1}{3}$$

Quadratic polynomial is of the form $k \{x^2 - (\text{sum of zeroes})x + \text{product of zeroes}\}$

$$\begin{aligned}&= k \left\{ x^2 - \frac{28}{9}x + \frac{1}{3} \right\} \\ &= \frac{k}{9} \{ 9x^2 - 28x + 3 \}\end{aligned}$$

26.

$$\begin{array}{r} x^2 + x + 7 \\ \hline x^2 + 1 \sqrt{x^4 + x^3 + 8x^2 + ax + b} \\ \hline x^4 + x^2 \\ - - \\ \hline x^3 + 7x^2 + ax + b \\ x^3 - - \\ \hline 7x^2 + (a - 1)x + b \\ 7x^2 - - \\ \hline (a - 1)x + (b - 7) \end{array}$$

As $x^4 + x^3 + 8x^2 + ax + b$ is exactly divisible by $x^2 + 1$

$\therefore \text{Remainder} = 0$

$$(a - 1)x + (b - 7) = 0$$

$$a = 1, \quad b = 7$$

27. Let α, β be the zeroes of $f(x)$

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

Zeroes of the required polynomial are $\frac{1}{\alpha}, \frac{1}{\beta}$

Quadratic polynomial is of form

$$\begin{aligned}&k \left\{ x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)x + \frac{1}{\alpha\beta} \right\} \\ &= k \left\{ x^2 - \left(\frac{\alpha + \beta}{\alpha\beta} \right)x + \frac{1}{\alpha\beta} \right\} \\ &= k \left\{ x^2 - \left(\frac{-b}{\frac{c}{a}} \right)x + \frac{a}{c} \right\} \\ &= k \left\{ x^2 + \frac{b}{c}x + \frac{a}{c} \right\} \\ &= \frac{k}{c} \{ cx^2 + bx + a \}\end{aligned}$$

28. $f(x) = x^3 - 4x^2 - 3x + 12$

As $\sqrt{3}, -\sqrt{3}$ are zeroes of $f(x)$, so $(x - \sqrt{3})$ $(x + \sqrt{3})$ are factors of $f(x)$.

i.e. $(x - \sqrt{3})(x + \sqrt{3}) = x^2 - 3$ is a factor of $f(x)$

factor of $f(x)$

$$\begin{array}{r} x - 4 \\ \hline x^2 - 3 \sqrt{x^3 - 4x^2 - 3x + 12} \\ \hline x^3 - 3x \\ - + \\ \hline - 4x^2 + 12 \\ - 4x^2 + 12 \\ + - \\ \hline 0 \end{array}$$

For third zero, $x - 4 = 0$

$$x = 4$$

29. $p(x) = 2x^2 + 5x + k$

$$\alpha + \beta = -\frac{5}{2}, \quad \alpha\beta = \frac{k}{2}$$

$$\text{Given: } \alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$$

$$\Rightarrow (\alpha + \beta)^2 - \alpha\beta = \frac{21}{4}$$

$$\Rightarrow \frac{25}{4} - \frac{k}{2} = \frac{21}{4}$$

$$\Rightarrow \frac{k}{2} = \frac{25}{4} - \frac{21}{4} = 1$$

$$\Rightarrow k = 2$$

30.

$$\begin{array}{r} x^2 + 2x + 3 \\ \hline x^2 + 5 \overline{)x^4 + 2x^3 + 8x^2 + 12x + 18} \\ \quad x^4 + 5x^2 \\ \hline \quad 2x^3 + 3x^2 + 12x + 18 \\ \quad 2x^3 \quad + 10x \\ \hline \quad 3x^2 + 2x + 18 \\ \quad 3x^2 \quad + 15 \\ \hline \quad 2x \quad + 3 \end{array}$$

On comparing $2x + 3$ with $px + q$,

we get $p = 2, q = 3$

Section D

31. $\frac{x^2 - 4x + (8 - k)}{x^2 - 2x + k}$

$$\begin{array}{r} x^2 - 4x + (8 - k) \\ \hline x^2 - 2x + k \overline{)x^4 - 6x^3 + 16x^2 - 25x + 10} \\ \quad x^4 - 2x^3 + kx^2 \\ \hline \quad - 4x^3 + (16 - k)x^2 - 25x + 10 \\ \quad - 4x^3 + 8x^2 \quad - 4kx \\ \hline \quad (8 - k)x^2 + (-25 + 4k)x + 10 \\ \quad (8 - k)x^2 - 2(8 - k)x + k(8 - k) \\ \hline \quad (-9 + 2k)x + (10 - 8k + k^2) \end{array}$$

Remainder = $(-9 + 2k)x + (10 - 8k + k^2)$

$$= x + \alpha$$

$$\frac{[x^4 - 6x^3 + 16x^2 - 25x + 10]}{x^2 - 2x + k} \text{ and remainder} = x + a$$

On diving the above given equation, we get,

Given the remainder is $(x + a)$

$$(4k - 25 + 16 - 2k)x + [10 - k(8 - k)] = x + a$$

$$(2k - 9)x + [10 - 8k + k^2] = x + a$$

On comparing on both sides, we get

$$2k - 9 = 1$$

$$2k = 10$$

$$\text{Therefore, } k = 5$$

$$\text{Also, } 10 - 8k + k^2 = a$$

$$10 - 8(5) - 5^2 = a$$

$$10 - 40 + 25 = a$$

$$\text{Therefore, } a = -5$$

32. $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$

Zeroes of $f(x)$ are $2 \pm \sqrt{3}$.

$$\text{So, } [x - (2 + \sqrt{3})], [x - (2 - \sqrt{3})]$$

are factors of $f(x)$

i.e. $[(x - 2) - \sqrt{3}] [(x - 2) + \sqrt{3}]$ is a factor of $f(x)$.

i.e. $(x - 2)^2 - (\sqrt{3})^2$ is a factor of $f(x)$

i.e. $x^2 + 4 - 4x - 3$ is a factor of $f(x)$

i.e. $x^2 - 4x + 1$ is a factor of $f(x)$

$$\begin{array}{r} x^2 - 2x - 35 \\ \hline x^2 - 4x + 1 \overline{)x^4 - 6x^3 - 26x^2 + 138x - 35} \\ \quad x^4 - 4x^3 + x^2 \\ \hline \quad - 2x^3 - 27x^2 + 138x \\ \quad - 2x^3 + 8x^2 - 2x \\ \hline \quad - 35x^2 + 140x - 35 \\ \quad - 35x^2 + 140x - 35 \\ \hline \quad 0 \end{array}$$

For other zeroes

Put $x^2 - 2x - 35 = 0$

$$x^2 - 7x + 5x - 35 = 0$$

$$x(x - 7) + 5(x - 7) = 0$$

$$(x + 5)(x - 7) = 0$$

$$x = -5, 7$$

So, other zeroes are -5 and 7 .

33. $f(x) = x^3 - 5x^2 - 2x + 24$

Let α, β, γ be the zeroes of $f(x)$.

$$\alpha\beta = 12 \quad \dots(i)$$

$$\alpha + \beta + \gamma = 5$$

$$\alpha\beta\gamma = -24 \Rightarrow 12\gamma = -24$$

$$\Rightarrow \gamma = -2$$

Also, $\alpha + \beta + \gamma = 5 \Rightarrow \alpha + \beta - 2 = 5$

$$\alpha + \beta = 7 \quad \dots(ii)$$

On solving (i) and (ii), we get

$$\alpha(7 - \alpha) = 12$$

$$7\alpha - \alpha^2 = 12$$

$$\alpha^2 - 7\alpha + 12 = 0$$

$$\alpha^2 - 3\alpha - 4\alpha + 12 = 0$$

$$\alpha(\alpha - 3) - 4(\alpha - 3) = 0$$

$$(\alpha - 3)(\alpha - 4) = 0$$

$$\alpha = 3, 4$$

If $\alpha = 3, \beta = 7 - \alpha = 7 - 3 = 4$

If $\alpha = 4, \beta = 7 - \alpha = 7 - 4 = 3$

So, zeroes of the polynomial are $3, 4$ and -2 .

34. $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$

$-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$ are zeroes of $f(x)$

$\left(x + \sqrt{\frac{3}{2}}\right)$, $\left(x - \sqrt{\frac{3}{2}}\right)$ are factors of $f(x)$

$\left(x + \sqrt{\frac{3}{2}}\right)$ $\left(x - \sqrt{\frac{3}{2}}\right)$ is a factor of $f(x)$

$\left(x^2 - \frac{3}{2}\right)$ is a factor of $f(x)$

$(2x^2 - 3)$ is a factor of $f(x)$

$$\begin{array}{r} x^2 - x - 2 \\ \hline 2x^2 - 3 \end{array} \begin{array}{r} 2x^4 - 2x^3 - 7x^2 + 3x + 6 \\ - 2x^4 - 3x^2 \\ \hline - 2x^3 - 4x^2 + 3x + 6 \\ - 2x^3 + 3x \\ \hline - 4x^2 + 6 \\ - 4x^2 + 6 \\ \hline + - \\ \hline 0 \end{array}$$

For other zeroes of $f(x)$

Put $x^2 - x - 2 = 0$

$$x^2 - 2x + x - 2 = 0$$

$$x(x - 2) + 1(x - 2) = 0$$

$$(x + 1)(x - 2) = 0$$

$$x = -1, 2$$

35. $f(x) = 6x^2 + x - 2$

$$\alpha + \beta = -\frac{1}{6}, \quad \alpha\beta = -\frac{1}{3}$$

$$(i) \quad \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{\frac{1}{36} + \frac{2}{3}}{-\frac{1}{3}} = \frac{\frac{1+24}{36}}{-\frac{1}{3}} = \frac{\frac{25}{36}}{-\frac{1}{3}} = -\frac{25}{12}$$

$$= \frac{25}{36} \times -\frac{3}{1} = -\frac{25}{12}$$

$$(ii) \quad 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = 2\left(\frac{\alpha + \beta}{\alpha\beta}\right)$$

$$= 2\left(\frac{-\frac{1}{6}}{-\frac{1}{3}}\right)$$

$$= 2\left(\frac{1}{2}\right)$$

$$= 1$$

$$\begin{aligned}
 \text{(iii)} \quad & \alpha^3 + \beta^3 \\
 &= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) \\
 &= (\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta] \\
 &= -\frac{1}{6} \left[\frac{1}{36} + 1 \right] \\
 &= -\frac{1}{6} \left[\frac{37}{36} \right] \\
 &= -\frac{37}{216}
 \end{aligned}$$

$$\begin{aligned}
 \text{(iv)} \quad & \alpha^3 \beta^3 - \alpha^5 \beta^5 \\
 &= \alpha^3 \beta^3 (1 - \alpha^2 \beta^2) \\
 &= \left(-\frac{1}{3} \right)^3 \left(1 - \frac{1}{9} \right) \\
 &= -\frac{1}{27} \left(\frac{9-1}{9} \right) \\
 &= -\frac{1}{27} \left(\frac{8}{9} \right) = -\frac{8}{243}
 \end{aligned}$$

36. (i) Let $p(x) = 8$

$$g(x) = 3$$

$$q(x) = 2$$

$$r(x) = 2$$

$$\deg p(x) = \deg q(x) = 0$$

(ii) Let $p(x) = 15$

$$g(x) = 4$$

$$q(x) = 2$$

$$r(x) = 7$$

$$\deg q(x) = \deg r(x) = 0$$

(iii) Let $p(x) = 20$

$$g(x) = 3$$

$$r(x) = 2$$

$$q(x) = 6$$

Here, $\deg r(x) = 0$

37. Let $f(x) = 2x^3 + x^2 - 5x + 2$

$$f\left(\frac{1}{2}\right) = 2\left(\frac{1}{8}\right) + \frac{1}{4} - \frac{5}{2} + 2$$

$$\begin{aligned}
 &= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2 \\
 &= \frac{1}{2} + 2 - \frac{5}{2} \\
 &= \frac{5}{2} - \frac{5}{2} = 0
 \end{aligned}$$

So, $\frac{1}{2}$ is a zero of $f(x)$

$$f(1) = 2 + 1 - 5 + 2 = 0$$

So, 1 is a zero of $f(x)$

$$\begin{aligned}
 f(-2) &= 2(-8) + 4 + 10 + 2 \\
 &= -16 + 16 \\
 &= 0
 \end{aligned}$$

So, -2 is a zero of $f(x)$.

$$\begin{aligned}
 \text{Sum of zeroes} & \quad \frac{-\text{Coefficient of } x^2}{\text{Coefficient of } x^3} \\
 &= \frac{1}{2} + 1 - 2 \quad = -\frac{1}{2} \\
 &= -\frac{1}{2}
 \end{aligned}$$

$$\text{So, Sum of zeroes} = \frac{-\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

Sum of product of zeroes taken two at a time

$$\frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$= \frac{1}{2}(1) + 1(-2) + \frac{1}{2}(-2) = -\frac{5}{2}$$

$$= \frac{1}{2} - 2 - 1$$

$$= \frac{1}{2} - 3$$

$$= -\frac{5}{2}$$

So, sum of product of zeroes taken two at a time

$$\frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$\text{Product of zeroes} \quad \frac{-\text{Constant term}}{\text{Coefficient of } x^3}$$

$$= \frac{1}{2}(1)(-2) = -\frac{2}{2}$$

$$= -1 \quad = -1$$

So, product of zeroes = $\frac{-\text{Constant term}}{\text{Coefficient of } x^3}$
 Hence, relationship between zeroes and the coefficients is verified.

38. $f(x) = x^3 + 13x^2 + 32x + 20$
 $f(x) = (-2)^3 + 13(-2)^2 + 32(-2) + 20$
 $= -8 + 52 - 64 + 20$
 $= 12 - 12$
 $= 0$

$\Rightarrow x + 2$ is a factor of $f(x)$

$$\begin{array}{r} x^2 + 11x + 10 \\ \hline x + 2 \overline{)x^3 + 13x^2 + 32x + 20} \\ x^3 + 2x^2 \\ \hline - - \\ 11x^2 + 32x + 20 \\ 11x^2 + 22x \\ \hline - - \\ 10x + 20 \\ 10x + 20 \\ \hline - - \\ 0 \end{array}$$

For other zeroes of $f(x)$,

put $x^2 + 11x + 10 = 0$
 $x^2 + 10x + x + 10 = 0$
 $x(x + 10) + 1(x + 10) = 0$
 $(x + 1)(x + 10) = 0$
 $x = -1, -10$

So, zeroes of $f(x)$ are $-2, -1, -10$

39. $f(x) = ax^2 + bx + c$
 $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$
 (i) $\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta)$
 $= \frac{c}{a} \left(-\frac{b}{a} \right) = -\frac{bc}{a^2}$
 (ii) $\alpha^4 + \beta^4 = (\alpha^2)^2 + (\beta^2)^2$
 $= [\alpha^2 + \beta^2]^2 - 2\alpha^2\beta^2$

$$\begin{aligned} &= [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)^2 \\ &= \left(\frac{b^2}{a^2} - \frac{2c}{a} \right)^2 - \frac{2c^2}{a^2} \\ &= \frac{1}{a^4} (b^2 - 2ac)^2 - \frac{2c^2}{a^2} \\ &= \frac{1}{a^4} (b^4 + 4a^2c^2 - 4ab^2c) - \frac{2c^2}{a^2} \\ &= \frac{b^4}{a^4} + \frac{4c^2}{a^2} - \frac{4b^2c}{a^3} - \frac{2c^2}{a^2} \\ &= \frac{b^4}{a^4} - \frac{4b^2c}{a^3} + \frac{2c^2}{a^2} \end{aligned}$$

40. $f(x) = x^3 - 6x^2 + 3x + 10$
 $a + (a + b) + (a + 2b) = 6$
 $3a + 3b = 6$

$$\boxed{\begin{array}{l} a + b = 2 \\ b = 2 - a \end{array}}$$

$$\begin{aligned} a(a + b)(a + 2b) &= -10 \\ a(2)(4 - a) &= -10 \\ 2a(4 - a) &= -10 \\ 8a - 2a^2 &= -10 \\ 2a^2 - 8a - 10 &= 0 \\ a^2 - 4a - 5 &= 0 \\ a^2 - 5a + a - 5 &= 0 \\ a(a - 5) + 1(a - 5) &= 0 \\ (a + 1)(a - 5) &= 0 \\ a &= -1, 5 \end{aligned}$$

For $a = -1, b = 2 - a = 2 - (-1) = 3$

For $a = 5, b = 2 - a = 2 - 5 = -3$

$a = -1, b = 3$

zeroes are $a, a + b, a + 2b$

$= -1, -1 + 3, -1 + 6$

$= -1, 2, 5$

$a = 5, b = -3$

zeroes are $a, a + b, a + 2b$

$= 5, 5 - 3, 5 - 6$

$= 5, 2, -1$

So, zeroes of the given polynomial are $-1, 2$ and 5 .

MULTIPLE CHOICE QUESTIONS

1. (c) The system of equations has no solution if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\text{i.e. } \frac{1}{2} = \frac{1}{k} \neq \frac{4}{3}$$

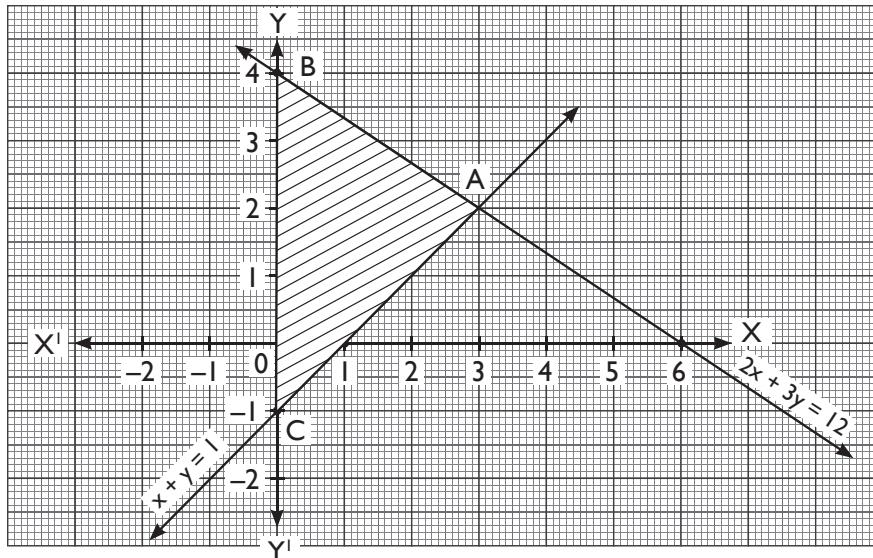
$$\text{i.e. } k = 2$$

2. For no solution, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

$$\text{i.e. } \frac{k}{6} = -\frac{5}{2} \neq \frac{2}{7}$$

$$\text{i.e. } k = -15$$

3. (a)



$$2x + 3y = 12$$

$$x - y = 1$$

$$x = 0$$

x	6	0
y	0	4

x	1	0
y	0	-1

$$\text{area of } \triangle ABC = \frac{1}{2} \times 5 \times 3 \\ = \frac{15}{12} = 7.5 \text{ sq. units}$$

4. (c) Let number of coins of ₹ 1 = x

number of coins of ₹ 2 = y

$$\therefore x + y = 50$$

$$\begin{array}{r} x + 2y = 75 \\ - \quad \quad \quad - \\ \hline -y = -25 \end{array}$$

$$y = 25$$

So,

$$x = 50 - y$$

$$= 50 - 25$$

$$= 25$$

$$\text{and } 10x + y + 27 = 10y + x$$

$$9x - 9y = -27$$

$$x - y = -3$$

....(ii)

On solving (i) and (ii), we get

$$\therefore x + y = 9$$

$$x - y = -3$$

$$\hline 2x = 6$$

$$x = 3$$

$$\text{From (i), } y = 9 - x = 9 - 3 = 6$$

So, number is $10x + y$

$$= 10(3) + 6 = 36$$

5. (b) Let x be the tens digit and y be the ones digit.

$$\therefore x + y = 9 \quad \dots(i)$$

WORKSHEET 1

Section A

1. $3x - y + 8 = 0, 6x - ky + 16 = 0$

The given equations are $3x - y + 8 = 0$ and $6x - ky + 16 = 0$. We have to find the point at which both the equations represent coincident lines.

For the lines to be coincident,

Substituting the values, we get

Either or

$$k = 2 \text{ or } k = 2$$

Therefore for $k = 2$, both the equations represent coincident lines.

2. Let number of girls be x and number of boys be y .

$$x + y = 15 \quad \dots(i)$$

$$x = 5 + y \Rightarrow x - y = 5 \quad \dots(ii)$$

On solving equations (i) and (ii), we get

$$x + y = 15$$

$$x - y = 5$$

$$2x = 20$$

$$x = 10$$

$$y = 15 - x = 15 - 10 = 5$$

3. General form of a pair of linear equations in two variables x and y is

$$a_1x + b_1y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

4. If a pair of linear equations in two variables is consistent, then the lines are either intersecting or coincident.

5. $2x + 3y = 7$

$$8x + (a + b)y = 28$$

Given pair of equations has infinitely many solutions if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\frac{2}{8} = \frac{3}{a+b} = \frac{7}{28}$$

$$a+b = \frac{3 \times 28^4}{7} = 12$$

$$a+b = 12$$

6. The pair of linear equations has infinitely many solutions if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\frac{10}{20} = \frac{5}{10} = \frac{k-5}{k}$$

$$\left(\frac{5}{10} = \right) \frac{1}{2} = \frac{k-5}{k}$$

$$k = 2k - 10$$

$$10 = k$$

7. $2x + 3y = 7$

$$(a + b)x + (2a - b)y = 21$$

System of equations has infinitely many

solutions if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

i.e. $\frac{2}{a+b} = \frac{3}{2a-b} = \frac{7}{21}$

$$4a - 2b = 3a + 3b, \quad 2a - b = \frac{3 \times 21}{7} = 9$$

$$a = 56,$$

$$2a - b = 9$$

$$a = 5(1)$$

$$2(5) - b = 9$$

$$a = 5$$

$$b = 10 - 9$$

$$b = 1$$

8. $ax + by = c$

$$lx + my = n$$

$\frac{a}{l} \neq \frac{b}{m}$ will give unique Solution

$\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$ (infinite solution)

$\frac{a}{l} = \frac{b}{m} \neq \frac{c}{n}$ (no solution)

$\frac{a}{l} \neq \frac{b}{m}$ will give unique Solution

Section B

9. The given equation is

$$2x + y = 4$$

$$3y - 2x = 3$$

Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

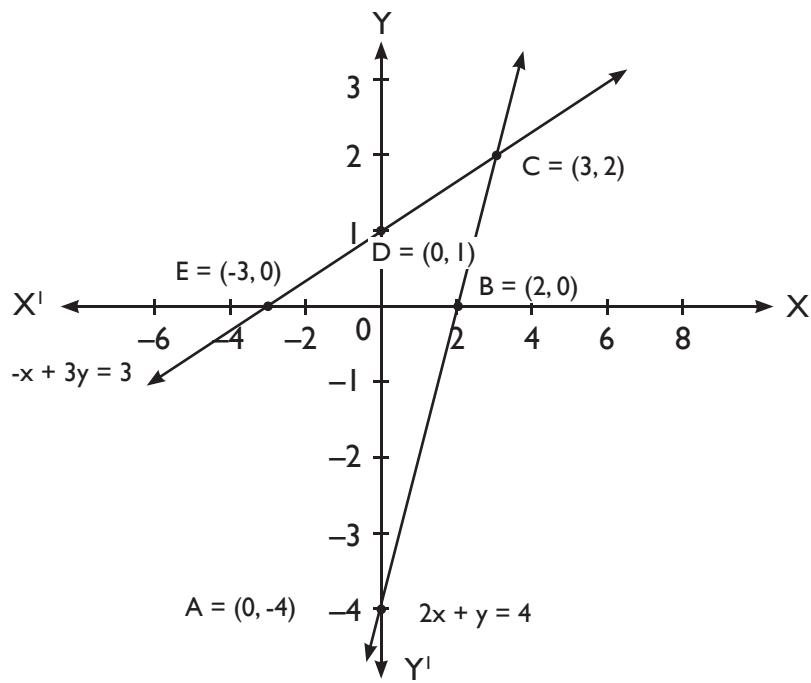
Table for $2x - y = 4$ or $y = 2x - 4$

x	0	2	3
$y = 2x - 4$	-4	0	2

Now table for $3y - 2x = 3$ or

$$y = \frac{x + 3}{3}$$

x	0	-3	3
$y = \frac{x + 3}{3}$	1	0	2



Here, the line intersecting at point C i.e. (3, 2)

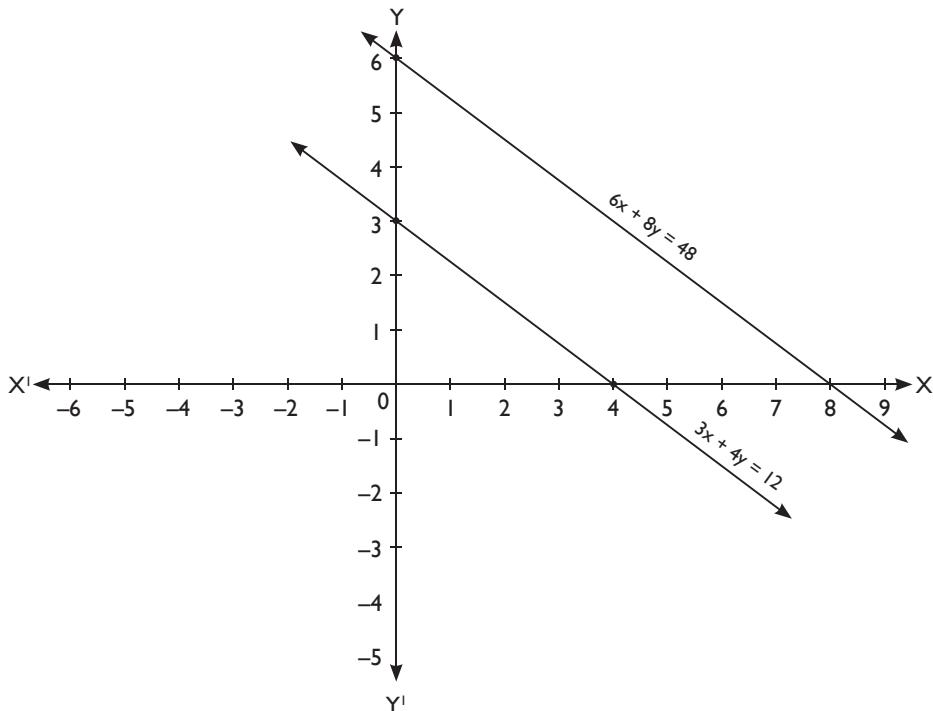
The point which intersects at y axis are (0, -4) and D(0, 1)

10. $3x + 4y = 12$

$$6x + 8y = 48$$

x	4	0
y	0	3

x	8	0
y	0	6



11. (i) $x + 2y = -1$

(ii) $2x - 3y = 12$

From (i), $x = -1 - 2y$

$$2(-1 - 2y) - 3y = 12 \quad (\text{Put in (ii)})$$

$$-2 - 4y - 3y = 12$$

$$-7y = 14$$

$$y = -2$$

So,

$$x = -1 - 2y$$

$$\begin{aligned}
 &= -1 - 2(-2) \\
 &= -1 + 4 \\
 &= 3
 \end{aligned}$$

$$12. \frac{2x}{a} + \frac{y}{b} = 2 \quad \dots(i)$$

$$\frac{x}{a} - \frac{y}{b} = 2 \quad \dots(ii)$$

From (ii), we have $\frac{x}{a} = 4 + \frac{y}{b}$

$$x = a \left(4 + \frac{y}{b} \right) \quad \dots(iii)$$

Putting this value of x in (i), we get

$$\begin{aligned}
 \frac{2a}{a} \left(4 + \frac{y}{b} \right) + \frac{y}{b} &= 2 \\
 2 \left(4 + \frac{y}{b} \right) + \frac{y}{b} &= 2 \\
 8 + \frac{2y}{b} + \frac{y}{b} &= 2 \\
 \frac{3y}{b} &= -b \\
 y &= \frac{-6b}{3} = -2b
 \end{aligned}$$

From (iii),

$$\begin{aligned}
 x &= a \left(4 + \frac{y}{b} \right) \\
 &= a \left(4 - \frac{2b}{b} \right) \\
 &= a(4 - 2) \\
 &= 2a
 \end{aligned}$$

$$13. 28x + 5y = 9 \quad \dots(i)$$

$$3x + 2y = 4 \quad \dots(ii)$$

On multiplying (i) by 2 and (ii) by 5, we get

$$56x + 10y = 18$$

$$\begin{array}{r}
 15x + 10y = 20 \\
 - \\
 \hline
 41x = -2 \\
 x = -\frac{2}{41}
 \end{array}$$

$$\text{From (i), } 28 \left(-\frac{2}{41} \right) + 5y = 9$$

$$-\frac{56}{41} + 5y = 9$$

$$\begin{aligned}
 5y &= 9 + \frac{56}{41} = \frac{425}{41} \\
 y &= \frac{85}{41}
 \end{aligned}$$

$$14. \text{ Let } \frac{1}{x} = p, \frac{1}{y} = q$$

$$2p + \frac{2}{3}q = \frac{1}{6} \Rightarrow 12p + 4q = 1$$

Other equation becomes $3p + 2q = 0$

On solving equation $12p + 4q = 1$ and $3p + 2q = 0$, we get

$$\begin{array}{r}
 12p + 4q = 1 \\
 2(3p + 2q = 0) \\
 12p + 4q = 1 \\
 - \frac{6p + 4q = 0}{6p = 1} \\
 p = \frac{1}{6} = x = \frac{1}{p} = 6
 \end{array}$$

From equation $3p + 2q = 0$, we get

$$\begin{array}{r}
 3 \left(\frac{1}{6} \right) + 2q = 0 \\
 2q = -\frac{1}{2} \\
 q = -\frac{1}{4} \Rightarrow y = -4
 \end{array}$$

Now, we need to find a

$$y = ax - 4$$

$$-4 = 6a - 4$$

$$6a = 0$$

$$a = 0$$

$$15. 2x + y = 35 \text{ (i)}, \quad 3x + 4y = 65 \text{ (ii)}$$

On multiplying equation (i) by 3 and equation (ii) by 2, we get

$$\begin{array}{r}
 6x + 3y = 105 \\
 6x + 8y = 130 \\
 \hline
 -5y = -25 \\
 y = 5
 \end{array}$$

From (i) $2x + 5 = 35$
 $2x = 30$
 $x = 15$

16. For unique solution: $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
 $\frac{k}{3} \neq \frac{2}{1}$
 $k \neq 6$

For Infinitely many solutions: $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
 $\frac{k}{3} = \frac{2}{1} = \frac{5}{2.5}$
 $\underline{\underline{k = 6}}$

17. $2x + ky = 11$
 $5x - 7y = 5$

For no solution: $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
 $\frac{2}{5} = \frac{k}{-7} \neq \frac{11}{5}$
 $5k = -14$
 $k = \frac{-14}{5}$

For unique solution:

$$\begin{array}{l}
 \frac{2}{5} \neq \frac{k}{-7} \\
 k \neq -\frac{14}{5}
 \end{array}$$

18. The given system of equation is
 $8x + 5y - 9 = 0$

$kx + 10y - 18 = 0$

The system of equation is of the form

$$a_1x + b_1y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

Where, $a_1 = 8, b_1 = 5, c_1 = -9$

And $a_2 = k, b_2 = 10, c_2 = -18$

For a unique solution, we must have

$$\begin{aligned}
 \frac{a_1}{a_2} &= \frac{b_1}{b_2} = \frac{c_1}{c_2} \\
 \Rightarrow \frac{8}{k} &= \frac{5}{10} = \frac{-9}{-18}
 \end{aligned}$$

Now

$$\begin{aligned}
 \frac{8}{k} &= \frac{5}{10} \\
 \Rightarrow 8 \times 10 &= 5 \times k \\
 \Rightarrow \frac{8 \times 10}{5} &= k \\
 \Rightarrow k &= 8 \times 2 = 16
 \end{aligned}$$

Hence, the given system of equations will have infinitely many solutions, if $k = 16$

Section C

19. Let the two numbers be x and y

$$\begin{aligned}
 \text{Therefore } \frac{x}{y} &= \frac{5}{6} \\
 6 \times x &= 5 \times y \\
 6 \times x - 5 \times y &= 0 \quad \times 5
 \end{aligned}$$

$$30 \times x - 25 \times y = 0 \quad \dots \dots \dots \text{(i)}$$

$$\text{Also } \frac{(x-8)}{(y-8)} = \frac{4}{5}$$

$$5 \times x - 40 = 4 \times y - 32$$

$$5 \times x - 4 \times y - 8 = 0 \quad \times 6$$

$$30 \times x - 24 \times y - 48 = 0 \quad \dots \dots \text{(ii)}$$

Subtracting (i) from (ii)

$$y - 48 = 0$$

$$y = 48$$

$$\begin{aligned}
 \text{Putting } y = 48 \text{ in } \frac{x}{y} &= \frac{5}{6} \\
 \frac{x}{48} &= \frac{5}{6}
 \end{aligned}$$

$$x = 5 \times \frac{48}{6}$$

$$x = 5 \times 8$$

$$x = 40$$

Therefore the two numbers are 40 and 48.

20. $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Thus this equation has infinite solution

$$x = 0 \text{ and } y = -2$$

$$x = 1 \text{ and } y = 1$$

Both lines overlap, thus they are having infinite solutions.

21. $\frac{5}{x+y} - \frac{2}{x-y} = -1, \frac{15}{x+y} + \frac{7}{x-y} = 10$

Let $\frac{1}{x+y} = p$ and $\frac{1}{x-y} = q$

$$5p - 2q = -1, \quad 15p + 7q = 10$$

Using elimination method, we get

$$\begin{aligned} 3(5p - 2q) = -1 &\Rightarrow 15p - 6q = -3 \\ &\quad \begin{array}{r} 15p + 7q = 10 \\ - \quad - \quad - \\ -13q = -13 \end{array} \\ &\quad q = 1 \\ &\quad \boxed{x - y = 1} \end{aligned}$$

From equation $5p - 2q = -1$, we get

$$5p - 2(1) = -1$$

$$5p = 1$$

$$p = \frac{1}{5}$$

$$\boxed{x + y = 5}$$

On solving equations $x + y = 5$ and

$x - y = 1$, we get

$$x - y = 1$$

$$x + y = 5$$

$$\hline$$

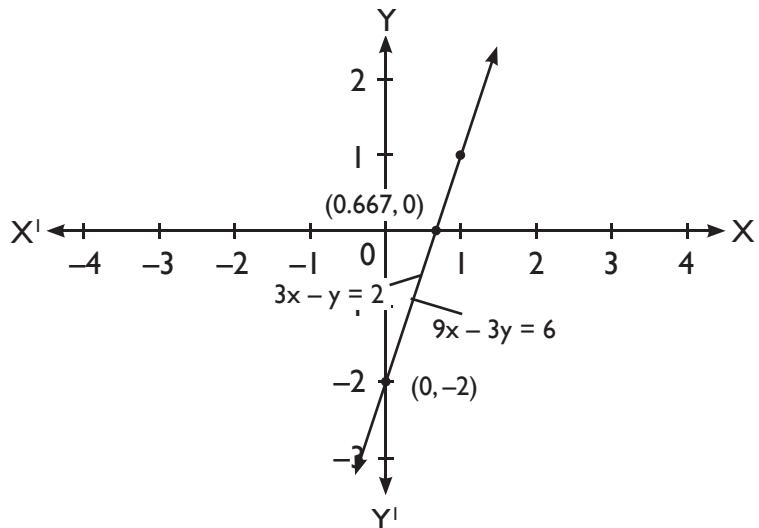
$$2x = 6$$

$$x = 3 \Rightarrow y = 5 - 3 = 2$$

22. $x - 4 = 0$

$$\Rightarrow x = 4$$

$$f(x) = x^3 + ax^2 + 2bx - 24$$



$$f(4) = 4^3 + a \cdot 4^2 + 2 \cdot b \cdot 4 - 24 = 0$$

$$\Rightarrow 64 + 16a + 8b = 24$$

$$\Rightarrow 16a + 8b = 24 - 64$$

$$\Rightarrow 2a + 1b = 3 - 8$$

$$\Rightarrow 2a + b = -5 \quad \dots \dots \text{(i)}$$

$$a - b = 8 \quad \dots \dots \text{(ii)}$$

Solving eq.(i) & (ii)

$$2a + b = -5$$

$$a - b = 8$$

$$\hline$$

$$3a = 3$$

$$\Rightarrow a = 1$$

Substituting the value of a in eq.(ii)

$$1 - b = 8$$

$$\Rightarrow b = -7$$

23. Let number of rows be x and number of students in each row be y . So, total number of students = xy

According to question,

$$(y + 3)(x - 1) = xy$$

$$xy + 3x - y - 3 = xy$$

$$3x - y = 3 \quad \dots \text{(i)}$$

$$\text{Again, } (y - 3)(x + 2) = xy$$

$$xy + 2y - 3x - 6 = xy$$

$$-3x + 2y = 6 \quad \dots(i)$$

On solving equations (i) and (ii), we get

$$\begin{aligned} 2(3x - y = 3) \Rightarrow \quad & 6x - 2y = 6 \\ & -3x + 2y = 6 \\ & \hline 3x = 12 \\ & x = 4 \end{aligned}$$

From (i)

$$\begin{aligned} y &= 3x - 3 \\ &= 12 - 3 \\ &= 9 \end{aligned}$$

So, Total number of students = xy

$$\begin{aligned} &= 4(9) \\ &= 36 \end{aligned}$$

24.

$$3x + 2y = 5$$

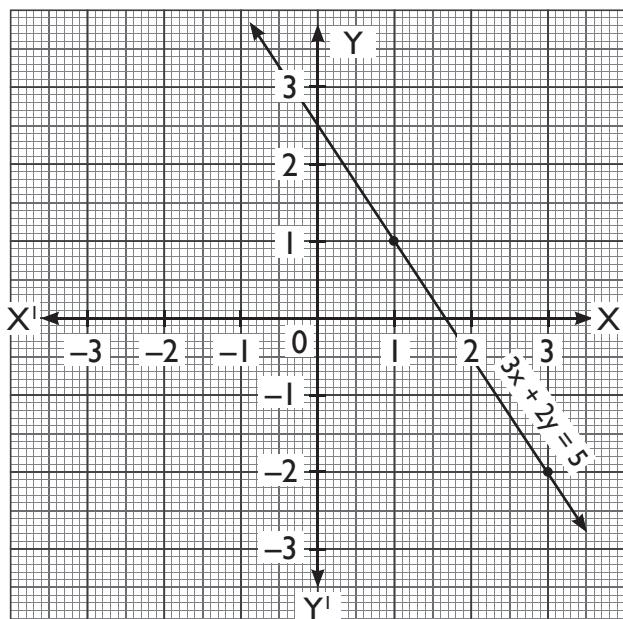
$$\begin{aligned} 3x &= 5 - 2y \\ x &= \frac{5 - 2y}{3} \end{aligned}$$

To check : (1, 1) is a point on the $3x + 2y = 5$

$$\begin{aligned} \text{LHS} &= 3x + 2y \\ &= 3(1) + 2(1) \\ &= 5 \\ &= \text{RHS} \end{aligned}$$

So, (1, 1) is a point on the line $3x + 2y = 5$

x	1	3
y	1	-2



25. Let digit at ten's place be x and digit at unit's place be y

$$\text{So, number} = 10x + y$$

According to question,

$$x + y = 5 \quad \dots(i)$$

$$10y + x = 10x + y + 9$$

$$0 = 9x - 9y + 9$$

$$x - y = -1 \quad \dots(ii)$$

On solving (i) and (ii), we get

$$x + y = 5$$

$$x - y = -1$$

$$\hline 2x = 4$$

$$x = 2$$

From (i), $y = 5 - 2 = 3$

So, number = $10x + y$

$$= 10(2) + 3$$

$$= 23$$

26. Let the adjacent angle be x .

$$\text{Other angle} = \frac{4}{5}x$$

As sum of adjacent angles of a parallelogram is 180° ,

$$x + \frac{4}{5}x = 180$$

$$\frac{9x}{5} = 180$$

$$x = \frac{180 \times 5}{9} = 100^\circ$$

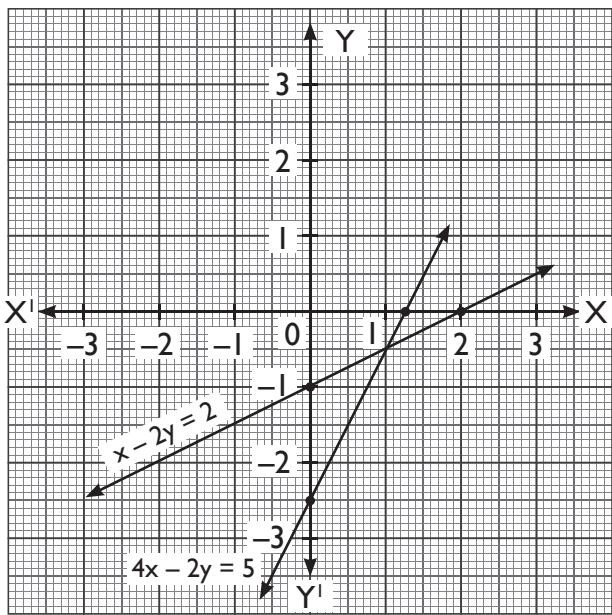
Angles are $x, \frac{4}{5}x$

$$\begin{aligned} &= 100, \frac{4}{5}(100) \\ &= 100, 80 \end{aligned}$$

27. (i) $x - 2y = 2, \quad 4x - 2y = 5$

x	0	2
y	-1	0

x	0	1.25
y	-2.5	0

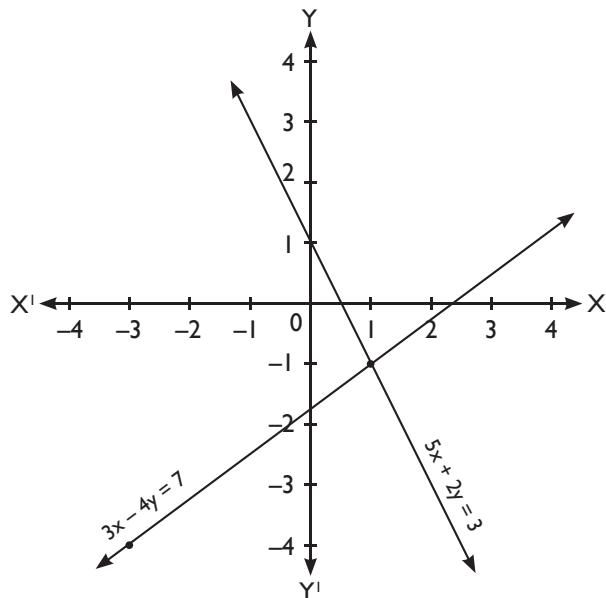


As the lines are intersecting, so the system of equations has unique solution and hence, consistent.

$$(ii) \quad 3x - 4y = 7, \quad 5x + 2y = 3$$

x	-3	1
y	-4	-1

x	1	2
y	-1	-3.5



28. In $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^\circ \text{ (Angle sum property)}$$

$$x + 3x + y = 180^\circ$$

$$4x + y = 180^\circ \quad \dots(i)$$

$$\text{Given: } 3y - 5x = 30 \quad \dots(ii)$$

$$\text{From (i), } y = 180 - 4x$$

$$\text{So, eqn (ii) becomes } 3(180 - 4x) - 5x = 30$$

$$540 - 12x - 5x = 30$$

$$17x = 510$$

$$x = 30$$

$$\text{From (i), } y = 180 - 4(30)$$

$$= 180 - 120$$

$$= 60^\circ$$

$$\text{So, } \angle A = x = 30^\circ$$

$$\angle B = 3x = 90^\circ$$

$$\angle C = y = 60^\circ$$

In $\triangle ABC$, $\angle B = 90^\circ$, so it is a right angled triangle

Section D

29. Let speed of boat in still water be x km/hr and that of stream be y km/hr.

So, speed of boat upstream = $(x - y)$ km/hr

Speed of boat downstream = $(x + y)$ km/hr

According to question,

$$\begin{aligned} \frac{32}{x-y} + \frac{36}{x+y} &= 7 \\ \frac{40}{x-y} + \frac{48}{x+y} &= 9 \end{aligned}$$

$$\text{Let } \frac{1}{x-y} = p, \quad \frac{1}{x+y} = q$$

So, we get equations as

$$32p + 36q = 7 \quad \dots(i)$$

$$40p + 48q = 9 \quad \dots(ii)$$

On multiplying (i) by 5 and (ii) by 4, we get

$$160p + 180q = 35$$

$$160p + 192q = 36$$

$$\begin{array}{r} 160p + 192q \\ - \quad - \\ \hline -12q = -1 \end{array}$$

$$q = \frac{1}{12}$$

From (iii), we get $10p - 10\left(\frac{1}{5}\right) = 1$
 $10p = 1 + 2 = 3$
 $p = \frac{3}{10}$
 $x = \frac{10}{3}$

So, Speed of X = $\frac{10}{3}$ km/hr

Speed of Y = 5 km/hr

32. $a(x+y) + b(x-y) = a^2 - ab + b^2$... (i)
 $a(x+y) - b(x-y) = a^2 - ab + b^2$... (ii)

Let $x+y = p$ and $x-y = q$

So, equations (i) and (ii) becomes

$$\begin{aligned} ap + bq &= a^2 - ab + b^2 & \dots (iii) \\ ap - bq &= a^2 + ab + b^2 & \dots (iv) \end{aligned}$$

On adding (iii) and (iv) we get,

$$\begin{aligned} 2ap &= 2(a^2 + b^2) \\ p &= \frac{1}{a}(a^2 + b^2) \end{aligned}$$

From equation (iii),

$$\begin{aligned} a\frac{1}{a}(a^2 + b^2) + bq &= a^2 - ab + b^2 \\ a^2 + b^2 + bq &= a^2 - ab + b^2 \\ bq &= -ab \\ q &= -a \end{aligned}$$

So, $x+y = \frac{1}{a}(a^2 + b^2)$
 $x-y = -a$

$$\begin{array}{r} x+y = \frac{1}{a}(a^2 + b^2) \\ x-y = -a \\ \hline 2x = \frac{1}{a}(a^2 + b^2) - a \end{array}$$

$$\begin{aligned} 2x &= a + \frac{b^2}{a} - a = \frac{b^2}{a} \\ x &= \frac{b^2}{2a} \end{aligned}$$

So, $y = x + a = \frac{b^2}{2a} + a = \frac{b^2 + 2a^2}{2a}$

33. Let $\frac{1}{2x+3y} = p$ and $\frac{1}{3x-2y} = q$

So, equations become

$$\frac{1}{2}p + \frac{12}{7}q = \frac{1}{2}$$

and $7p + 4q = 2$

i.e. $7p + 24q = 7$ (i)

and $7p + 4q = 2$ (ii)

On subtracting (ii) from (i), we get

$$20q = 5 \Rightarrow q = \frac{1}{4}$$

From (i), $7p + 24\left(\frac{1}{4}\right) = 7$

$7p = 1$

$$p = \frac{1}{7}$$

So, we get $2x + 3y = 7$ (iii)

$3x - 2y = 4$ (iv)

On multiplying (iii) by 3 and (iv) by 2 and subtracting, we get

$$6x + 9y = 21$$

$$\begin{array}{r} -6x - 4y = 8 \\ \hline 13y = 13 \\ y = 1 \end{array}$$

From (iii)

$$2x + 3(1) = 7$$

$$2x = 4$$

$$x = 2$$

34. $kx - y = 2$

$$6x - 2y = 3$$

(i) For unique solution : $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
 $\frac{k}{6} \neq \frac{-1}{-2}$
 $k \neq 3$

(ii) For no solution : $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
 $\frac{k}{6} = \frac{-1}{-2} \neq \frac{2}{3}$
 $k = 3$

The system has infinitely many

solutions, if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

i.e.

$$\frac{k}{6} = \frac{-1}{-2} = \frac{2}{3}$$

Clearly, $\frac{-1}{-2} \neq \frac{2}{3}$,

So, there is no value of k for which the given system of equations has infinitely many solutions.

35. Income is 8a and 7a expenditure is 19b and 16b

Saving is 1250

$$8a - 19b = 1250$$

$$7a - 16b = 1250$$

$$19 \times 7b = 1250 \times 7$$

$$16 \times 8b = 1250 \times 8$$

$$133b - 128b = 1250$$

$$5b = 1250$$

$$b = 250$$

$$a = 750$$

$$\text{Income of } x = 6000$$

$$\text{Income of } y = 5250$$

$$36. \frac{2}{p+q} = \frac{3}{2p-q} = \frac{7}{21}$$

$$\frac{2}{p+q} = \frac{3}{2p-q} = \frac{1}{3}$$

$$\frac{2}{p+q} = \frac{1}{2p} \text{ and } \frac{3}{2p-q} = \frac{1}{3}$$

$$p+q = 6 \text{ and } 2p-q = 9$$

$$(p+q) + (2p-q) = 6 + 9$$

$$3p = 15$$

$$p = 5$$

Put p = 5 in p + q = 6 or 2p - q = 9, for getting the value of q.

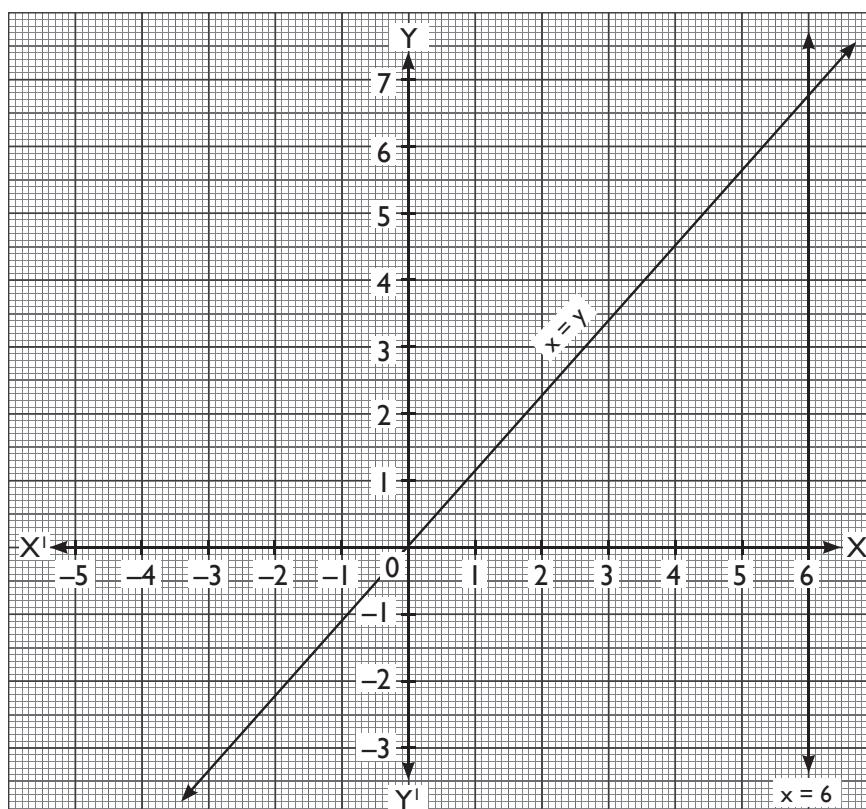
$$q = 1.$$

Given system of equations will have infinitely many solutions, if p = 5 and q = 1.

WORKSHEET 2

Section A

i.



$$\text{Area of } \Delta = \frac{1}{2} \times 6 \times 6 \\ = 18 \text{ sq. units}$$

2. The system of equations has no solution if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

i.e.

$$\frac{1}{3} = \frac{2}{k} \neq \frac{5}{15}$$

$$k = 6$$

3. $3x + y = 1$ and

$$(2k - 1)x + (k - 1)y = 2k + 1$$

$$\text{Inconsistent} \Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\Rightarrow \frac{3}{(2k - 3)} \neq \frac{10}{(k - 1)}$$

$$\Rightarrow 3k - 1 \neq 2k - 1$$

$$\Rightarrow 3k - 2k \neq -1 + 1$$

$$\Rightarrow k \neq 1$$

4. The system of equations represent intersecting lines if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

$$\frac{2}{k} \neq \frac{5}{7}$$

$$k \neq \frac{14}{5}$$

5. The system of equations has a unique solution if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

$$\frac{k}{6} \neq \frac{-1}{-2}$$

$$k \neq 3$$

$$6. x + ky = 0$$

$$a_1 = 1, b_1 = k$$

$$2x - y = 0$$

$$a_2 = 2, b_2 = -1$$

They have unique solution when

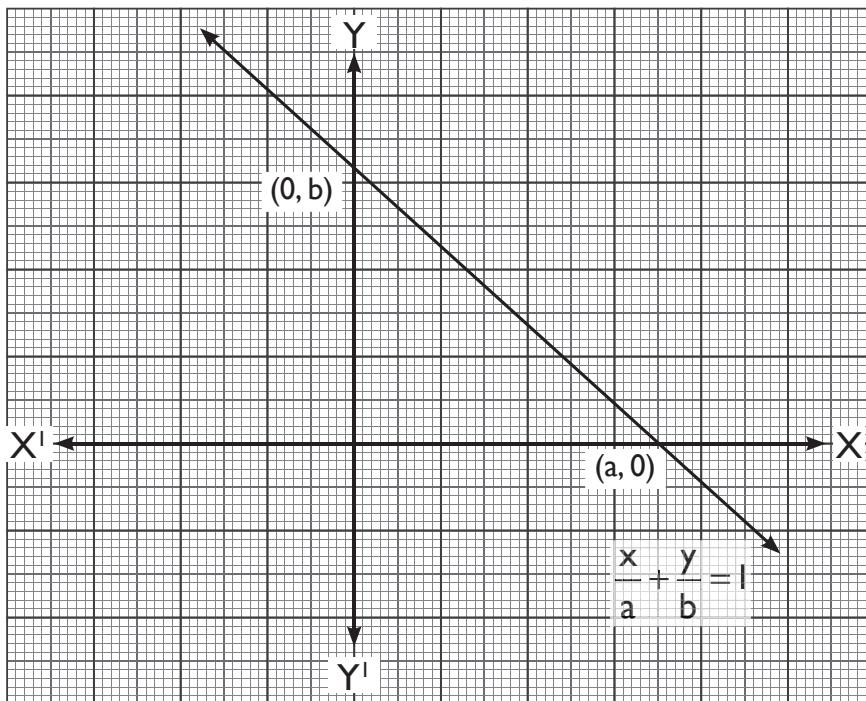
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\text{i.e. } \frac{1}{2} \neq \frac{k}{-1}$$

$$\text{i.e. } k \neq \frac{-1}{2}$$

It means for all values of k except $k = \frac{-1}{2}$, the equation will have unique solution.

7.



$$\text{Area of triangle} = \frac{1}{2} \times a \times b$$

$$= \frac{ab}{2}$$

8. As $(3, a)$ lies on line $2x - 3y = 5$

$$2(3) - 3(a) = 5$$

$$6 - 3a = 5$$

$$3a = 1$$

$$a = \frac{1}{3}$$

9. $X + 2y - 8 = 0$

$$2x + 4y - 16 = 0$$

Here, $a_1 = 1, b_1 = 2, c_1 = -8$

$$a_2 = 2, b_2 = 4, c_2 = -16$$

$$\text{so, } \frac{a_1}{a_2} = \frac{1}{2}$$

$$\frac{b_1}{b_2} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{c_1}{c_2} = \frac{-8}{-16} = \frac{1}{2}$$

Since $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, the pair of linear equations has infinitely many solutions.

$$10. \ x + y = 14$$

$$x = 14 - y \quad [1]$$

Now

$$x - y = 4$$

$$x = 4 + y \quad [2]$$

From [1] & [2]

$$14 - y = 4 + y$$

$$10 = 2y$$

$$y = 5$$

Now

$$x + y = 14$$

$$x + 5 = 14$$

$$x = 9$$

&
 $x - y = 4$
 $x - 5 = 4$
 $x = 9$

Hence in both cases value of x and y r same
so it is consistent

Section B

$$11. -4x + y = 1 \quad \dots(i)$$

$$6x - 5y = 9 \quad \dots(ii)$$

On multiplying eqⁿ (i) by 5 and adding both the equations, we get

$$5(-4x + y) + 6x - 5y = 5 + 9$$

$$-20x + 5y + 6x - 5y = 14$$

$$-14x = 14$$

$$x = -1$$

$$\text{From (i), } y = 1 + 4x = 1 - 4$$

$$y = -3$$

12. Given,

$$2x - 3y + 6 = 0 \quad \dots(i)$$

$$4x - 5y + 2 = 0 \quad \dots(ii)$$

From eq. (i) and (ii) we have,

$$a_1 = 2, b_1 = -3, c_1 = -6$$

$$a_2 = 4, b_2 = -5, c_2 = 2$$

$$\text{Now, } \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{b_1}{b_2} = \frac{-3}{-5} = \frac{3}{5}$$

$$\frac{c_1}{c_2} = \frac{6}{2} = 3$$

$$\text{Since, } \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

∴ The given equation will have a unique solution and the equation will intersect at a point.

13. Given,

$$2x = 5y + 4$$

$$2x - 5y = 4 \quad \dots(i)$$

$$3x - 2y + 16 = 0$$

$$-3x + 2y = 16 \quad \dots(ii)$$

Multiplying (i) by 3 and (ii) by 2, we get

$$6x - 15y = 12 \quad \dots(iii)$$

$$-6x + 4y = 32 \quad \dots(iv)$$

Adding (iii) and (iv) we get

$$11y = 44$$

$$y = 4$$

Substituting the value of y in (i) we get

$$2x - 5y = 4$$

$$2x - 5 \times 4 = 4$$

$$2x - 20 = 4$$

$$2x = 24$$

$$x = 12$$

Hence, $x = 12, y = 4$

14. For unique solution, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

i.e. $\frac{6}{k} \neq \frac{2}{1}$

$k \neq 3$

For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$\frac{6}{k} = \frac{2}{1} = \frac{3}{b_2}$$

Clearly $\frac{2}{1} \neq \frac{3}{2}$. so, there does not exist any values of k for which the system of equations has infinitely many solutions.

15. $99x + 101y = 499$... (i)

$101x + 99y = 501$... (ii)

On subtracting (i) from (ii), we get

$2x - 2y = 2$

$x - y = 1$... (iii)

On adding (i) and (ii), we get

$200x + 200y = 1000$

$x + y = 5$... (iv)

On adding (iii) and (iv), we get

$2x = 6$

$x = 3$

From (iv), $y = 5 - x$

$= 5 - 3$

$= 2$

16. The system of equations has infinite solutions if

$x + (k + 1)y = 5$

$(k + 1)x + 9y = (8k - 1)$

\Rightarrow For infinitely many solutions

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\Rightarrow \frac{1}{k+1} = \frac{k+1}{9} = \frac{5}{8k-1}$$

$$\Rightarrow \frac{1}{k+1} = \frac{k+1}{9}$$

$$\Rightarrow (k + 1)^2 = 9$$

$$\Rightarrow k + 1 = \pm \sqrt{9}$$

$$\Rightarrow k + 1 = \pm 3$$

Case - I

$$\Rightarrow k + 1 = +3$$

$$\Rightarrow k = 2$$

Case - 2

$$\Rightarrow k + 1 = -3$$

$$\Rightarrow k = -4$$

17. Let the numerator be x and denominator be y.

So, fraction = $\frac{x}{y}$

According to question,

$$\frac{x+1}{y+1} = \frac{7}{8}$$

$$8x + 8 = 7y + 7$$

$$8x - 7y = -1 \quad \dots (i)$$

Again, $\frac{x-1}{y-1} = \frac{6}{7}$

$$7x - 7 = 6y - 6$$

$$7x - 6y = 1 \quad \dots (ii)$$

On multiplying (i) by 7 and (ii) by 8, we get,

$$56x - 49y = -7$$

$$\begin{array}{r} 56x - 48y = 8 \\ - \quad + \quad - \\ -y = -15 \end{array}$$

$$y = 15$$

From (i), $8x - 7(15) = -1$

$$8x = -1 + 105 = 104$$

$$x = \frac{104}{8} = 13$$

18. a = 8 and b = 5

Step-by-step explanation:

As, $a_1 = 3, b_1 = -a - 1, c_1 = 2b - 1$

$$a_2 = 5, b_2 = 1 - 2a, c_2 = 3b$$

As, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Part I

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$

$$\frac{3}{5} = \frac{-a - 1}{1 - 2a}$$

$$5(-a - 1) = 3(1 - 2a)$$

$$-5a - 5 = 3 - 6a$$

$$-5 = 3 - a$$

$$-8 = -a$$

Cancelling the minus sign from both the sides

We get;

$$8 = a$$

Part II

$$\frac{a_1}{a_2} = \frac{c_1}{c_2}$$

$$\frac{3}{5} = \frac{2b - 1}{3b}$$

On cross multiplication

$$9b = 10b - 5$$

$$-b = -5$$

By cancelling minus sign from both the sides

We get,

$$b = 5$$

Therefore, $a = 8$ and $b = 5$

$$19. \quad 2x - 3y + 6 = 0 \quad \dots(i)$$

$$4x - 5y + 2 = 0 \quad \dots(ii)$$

$$\text{Here, } \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{b_1}{b_2} = \frac{-3}{-5} = \frac{3}{5}$$

$$\frac{c_1}{c_2} = \frac{6}{2} = 3$$

As $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, so, the system has a unique solution.

On multiplying (i) by 2 and subtracting (ii) from (i), we get

$$4x - 6y + 12 = 0$$

$$\begin{array}{r} 4x - 5y + 2 = 0 \\ - \quad + \quad - \\ \hline -y = -10 \end{array}$$

$$y = 10$$

$$\text{From (i), } 2x - 3(10) + 6 = 0$$

$$2x - 24 = 0$$

$$x = 12$$

$$20. \quad \frac{x}{10} + \frac{y}{5} + 1 = 15$$

$$\frac{x}{10} + \frac{y}{5} = 14$$

$$2x + y = 140$$

... (i)

$$\text{Again, } \frac{x}{8} + \frac{y}{6} = 15$$

$$\frac{3x + 4y}{24} = 15$$

$$3x + 4y = 360$$

... (ii)

$$\text{From (i), } y = 140 - 2x$$

On putting this value of y in (ii), we get

$$3x + 4(140 - 2x) = 360$$

$$3x + 560 - 8x = 360$$

$$-5x = -200$$

$$x = 40$$

$$\text{So, } y = 140 - 2x$$

$$= 140 - 2(40)$$

$$= 140 - 80$$

$$= 60$$

Section C

21. Let the fixed charge be ₹ x and cost of food per day be ₹ y .

According to question,

$$x + 20y = 3000 \quad (i)$$

$$\begin{array}{r} x + 25y = 3500 \\ - \quad + \quad - \\ \hline \end{array} \quad (ii)$$

$$-5y = -500$$

$$y = 100$$

$$\text{From (i), we get } x = 3000 - 20(100)$$

$$= 3000 - 2000$$

$$= 1000$$

$$\text{So, fixed charge} = ₹1000$$

$$\text{Cost of food per day} = ₹100$$

$$22. \quad x + y = 1$$

$$2x - 3y = 11$$

According to cross multiplication method,

$$\begin{aligned}\frac{x}{-11-3} &= \frac{y}{-2+11} = \frac{1}{-3-2} \\ \frac{x}{-14} &= \frac{y}{9} = \frac{1}{-5} \\ \frac{x}{-14} &= \frac{1}{-5}, \quad \frac{y}{9} = \frac{1}{-5} \\ x &= \frac{14}{5}, \quad y = \frac{-9}{5}\end{aligned}$$

23. (i) $5x + 6y = 15$

$$\text{As } \frac{4}{5} \neq \frac{-5}{6} \left(\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \right)$$

(ii) $8x - 10y = 30$

$$\text{As } \frac{4}{8} = \frac{-5}{-10} \neq \frac{10}{30} \left(\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \right)$$

(iii) $8x - 10y = 20$

$$\text{As } \frac{4}{8} = \frac{-5}{-10} = \frac{10}{20} \left(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \right)$$

24. For infinite solution

$$\begin{aligned}\frac{a_1}{a_2} &= \frac{b_1}{b_2} = \frac{c_1}{c_2} \\ \frac{2}{4} &= \frac{a-4}{a-1} = \frac{-2b+1}{-5b-1}\end{aligned}$$

$$2(a-1) = 4(a-4)$$

$$2a - 2 - 4a + 16 = 0$$

$$-2a = -14$$

$$a = 7,$$

$$2(-5b+1) = 4(-2b-1)$$

$$-10b + 8b + 2 + 4 = 0$$

$$-2b = -6$$

$$b = 3$$

25. Let $\frac{1}{x-1} = p$ and $\frac{1}{y-2} = q$

So, equations become

$$5p + q = 2 \quad (i)$$

$$6p - 3q = 1 \quad (ii)$$

On multiplying (i) by 3 and subtracting equations (i) and (ii), we get

$$\begin{aligned}15p + 3q &= 6 \\ 6p - 3q &= 1 \\ \hline 21p &= 7 \\ p &= \frac{1}{3}\end{aligned}$$

$$\therefore x - 1 = 3 \Rightarrow x = 4$$

$$\begin{aligned}\text{From eqn (i), } q &= 2 - 5p \\ &= 2 - 5 \left(\frac{1}{3} \right) \\ &= \frac{1}{3} \\ \therefore y - 2 &= 3 \Rightarrow y = 5\end{aligned}$$

26. Let $\frac{1}{x} = p$ and $\frac{1}{y} = q$

So, equations become

$$\begin{aligned}p - 4q &= 2 \\ p + 3q &= 9 \\ \hline -7q &= -7 \\ q &= 1\end{aligned}$$

From eqn $p - 4q = 2$, we get

$$\begin{aligned}p &= 2 + 4(1) \\ &= 6\end{aligned}$$

So, $x = \frac{1}{6}$, $y = 1$

27. Let father's age be x years and son's age be y years.

According to question,

$$2y + x = 70 \quad (i)$$

$$2x + y = 95 \quad (ii)$$

From (i), $x = 70 - 2y$

On putting value of x in (ii), we get

$$2(70 - 2y) + y = 95$$

$$140 - 4y + y = 95$$

$$3y = 45$$

$$y = 15$$

So, $x = 70 - 2y$

$$\begin{aligned}
 &= 70 - 2(15) \\
 &= 70 - 30 \\
 &= 40
 \end{aligned}$$

So, age of father = 40 years
age of son = 15 years

28. Let speed of train be x km/hr and speed of car be y km/hr.

According to question,

$$\frac{160}{x} + \frac{600}{y} = 8$$

$$\frac{240}{x} + \frac{520}{y} = 41$$

$$\text{Let } \frac{1}{x} = p, \quad \frac{1}{y} = q$$

So, we get equations as

$$160p + 600q = 8 \quad \dots(i)$$

$$1200p + 2600q = 41 \quad \dots(ii)$$

On multiplying (i) by 30 and (ii) by 4, we get

$$4800p + 18000q = 240$$

$$4800p + 10400q = 164$$

$$\begin{array}{r}
 - \\
 - \\
 \hline
 7600q = 76
 \end{array}$$

$$q = \frac{76}{7600} = \frac{1}{100}$$

$$\text{i.e. } y = 100$$

From (i), we get

$$160p + 600 \left(\frac{1}{100} \right) = 8$$

$$160p + 6 = 8$$

$$160p = 2$$

$$p = \frac{1}{80}$$

$$\text{i.e. } x = 80$$

So, Speed of train = 80 km/hr

Speed of car = 100 km/hr

29. Let time taken by one man alone be x days.

Let time taken by one boy alone be y days.

According to question,

$$\frac{8}{x} + \frac{12}{y} = \frac{1}{10}$$

$$\frac{6}{x} + \frac{8}{y} = \frac{1}{14}$$

$$\text{Let } \frac{1}{x} = p, \quad \text{and } \frac{1}{y} = q$$

So, we get equations as

$$\begin{aligned}
 8p + 12q &= \frac{1}{10} \\
 80p + 120q &= 1 \quad (i)
 \end{aligned}$$

Another equation becomes,

$$\begin{aligned}
 6p + 8q &= \frac{1}{14} \\
 84p + 112q &= 1 \quad (ii)
 \end{aligned}$$

On multiplying (i) by 21 and (ii) by 20, we get

$$1680p + 2520q = 21$$

$$\begin{array}{r}
 -1680p - 2240q = 20 \\
 \hline
 280q = 1
 \end{array}$$

$$q = \frac{1}{280}$$

$$\text{So, } y = 280$$

From (i),

$$80p + 120 \left(\frac{1}{280} \right) = 1$$

$$80p + \frac{3}{7} = 1$$

$$80p = 1 - \frac{3}{7} = \frac{4}{7}$$

$$p = \frac{1}{140}$$

$$\text{So, } x = 140$$

∴ A man can complete the work in 140 days and a boy can complete the work in 280 days.

30. Let father's age = x years

Sum of ages of 2 children = y years

According to question,

$$x = 2y \quad (i)$$

and

$$x + 20 = y + 20 + 20$$

$$x - y = 20 \quad (ii)$$

On putting (i) in (ii), we get

$$\begin{aligned}
 2y - y &= 20 \\
 y &= 20 \\
 \therefore x &= 2y = 40 \\
 \text{So, father's age} &= 40 \text{ years}
 \end{aligned}$$

Section D

31. Let Speed of car A = x km/hr
Speed of car B = y km/hr

According to question,

$$\begin{array}{c}
 \xrightarrow{\hspace{2cm}} \xleftarrow{\hspace{2cm}} \\
 \text{A} \qquad \qquad \text{B} \\
 \frac{4}{3}x + \frac{4}{3}y = 80 \\
 x + y = 60 \qquad \qquad \qquad \text{(i)} \\
 \xrightarrow{\hspace{4cm}} \xrightarrow{\hspace{4cm}} \\
 \text{A} \qquad \qquad \text{B} \\
 8x - 8y = 80 \\
 x - y = 10 \qquad \qquad \qquad \text{(ii)}
 \end{array}$$

On adding (i) and (ii), we get

$$\begin{aligned}
 2x &= 70 \\
 x &= 35 \\
 \text{From (i),} \quad y &= 60 - x \\
 &= 60 - 35 \\
 &= 25
 \end{aligned}$$

$$\begin{aligned}
 \text{From (i),} \quad y &= 60 - x \\
 &= 60 - 35 \\
 &= 25
 \end{aligned}$$

$$\begin{aligned}
 \text{So, Speed of car A} &= 35 \text{ km/hr} \\
 \text{Speed of car B} &= 25 \text{ km/hr}
 \end{aligned}$$

32. Let cost of one chair be $\$x$ and cost of one table be $\$y$.

According to question,

$$\begin{aligned}
 4x + 3y &= 2100 \qquad \text{(i)} \\
 5x + 2y &= 1750 \qquad \text{(ii)}
 \end{aligned}$$

On multiplying eqⁿ (i) by 5 and (ii) by 4, we get

$$\begin{array}{r}
 20x + 15y = 10500 \\
 20x + 8y = 7000 \\
 \hline
 \qquad \qquad \qquad 7y = 3500
 \end{array}$$

$$\begin{aligned}
 y &= \frac{3500}{7} = 500 \\
 \text{From (i), } 4x + 3(500) &= 2100 \\
 4x &= 2100 - 1500 \\
 4x &= 600 \\
 x &= 150
 \end{aligned}$$

$$\begin{aligned}
 \text{Cost of one chair} &= \$150 \\
 \text{Cost of one table} &= \$500
 \end{aligned}$$

Therefore,

$$\begin{aligned}
 \text{Cost of five chairs} &= 5 \times 150 \\
 &= \$750 \\
 \text{Cost of eight tables} &= 8 \times 500 \\
 &= \$4000
 \end{aligned}$$

33. Let father's age = x years

Son's age = y years

According to question,

$$\begin{aligned}
 x - 10 &= 12(y - 10) \\
 \text{i.e.} \quad x - 12y &= -110 \qquad \text{(i)}
 \end{aligned}$$

For another eqⁿ,

$$\begin{aligned}
 x + 10 &= 2(y + 10) \\
 x - 2y &= 10 \qquad \qquad \qquad \text{(ii)}
 \end{aligned}$$

On subtracting eqⁿ (ii) from (i), we get

$$\begin{array}{r}
 x - 12y = -110 \\
 x - 2y = 10 \\
 \hline
 -10y = -120 \\
 y = 12
 \end{array}$$

$$\begin{aligned}
 \text{From (ii),} \quad x &= 10 + 2y \\
 &= 10 + 24 \\
 &= 34
 \end{aligned}$$

$$\begin{aligned}
 \text{So, Father's age} &= 34 \text{ years} \\
 \text{Son's age} &= 12 \text{ years}
 \end{aligned}$$

34. Perimeter of ABCDE = 21 cm

$$\text{i.e. } AB + BC + CD + DE + AE = 21$$

$$3 + x - y + x + y + x - y + 3 = 21$$

$$3x - y = 15 \qquad \qquad \text{(i)}$$

As BE || CD and BC || DE,

BCDE is a parallelogram

$\therefore BE = CD$ (opposite sides of parallelogram)

$$\text{i.e. } x + y = 5 \quad (\text{ii})$$

On adding equations (i) and (ii), we get

$$4x = 20$$

$$x = 5$$

$$\text{from (i), } 3(5) - y = 15$$

$$y = 0$$

$$\text{So, } BC = x - y = 5 - 0 = 5 \text{ cm}$$

$$CD = x + y = 5 + 0 = 5 \text{ cm}$$

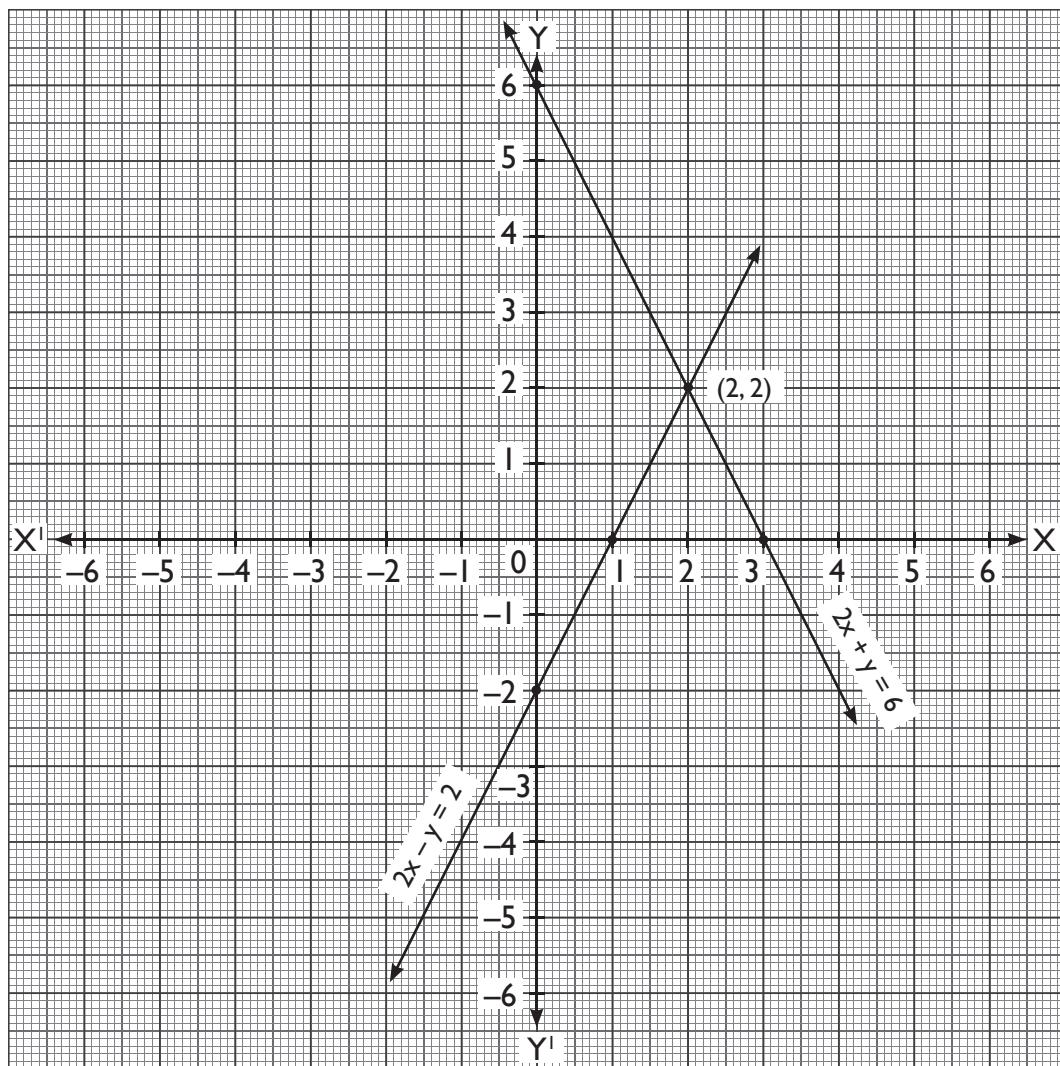
$$DE = x - y = 5 - 0 = 5 \text{ cm}$$

$$BE = 5 \text{ cm}$$

So, perimeter of quadrilateral BCDE

$$= 4 \times 5 \text{ (perimeter} = 4 \times \text{side)} = 20 \text{ cm}$$

36.



$$2x + y = 6,$$

x	3	0
y	0	6

$$2x - y = 2$$

x	0	1
y	-2	0

As the equations intersect at point (2, 2), so, (2, 2) is a solution of given set of equations.

$$35. \text{ Let } \frac{1}{x} = p \text{ and } \frac{1}{y} = q.$$

So, equations become

$$ap - bq = 0$$

$$ab^2p + a^2bq = a^2 + b^2$$

$$\frac{p}{a^2b + b^3 - 0} = \frac{q}{0 + a^3 + ab^2} = \frac{1}{a^3b + ab^3}$$

$$\frac{p}{b(a^2 + b^2)} = \frac{q}{a(a^2 + b^2)} = \frac{1}{ab(a^2 + b^2)}$$

$$\frac{p}{b(a^2 + b^2)} = \frac{1}{ab(a^2 + b^2)}$$

$$\frac{q}{a(a^2 + b^2)} = \frac{1}{ab(a^2 + b^2)}$$

$$p = \frac{1}{a} \qquad \qquad q = \frac{1}{b}$$

$$\therefore x = a$$

$$y = b$$

Area of triangle formed by lines representing these equations with the x – axis = $\frac{1}{2} \times 2 \times 2 = 2$ sq units.

Area of triangle formed by lines representing these equations with the y – axis = $\frac{1}{2} \times 8 \times 2 = 8$ sq units.

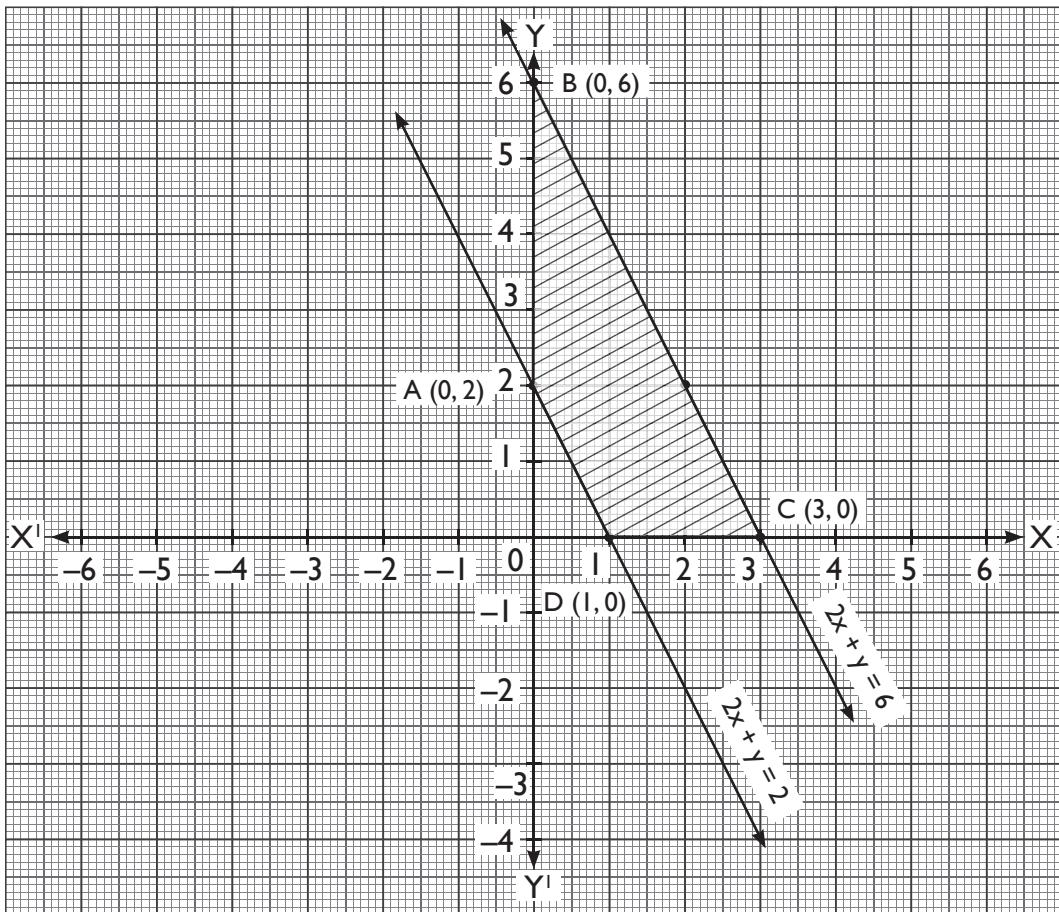
$$\text{So, Ratio} = \frac{2}{8} = \frac{1}{4}.$$

37. $2x + y = 2$

x	0	1
y	2	0

$2x + y = 6$

x	0	3
y	6	0



Vertices of trapezium are A(0, 2), B(0, 6), C(3, 0) and D(1, 0).

Area of trapezium ABCD = area of $\triangle BOC$ – area of $\triangle AOD$

$$= \frac{1}{2} \times 3 \times 6 - \frac{1}{2} \times 1 \times 2 = 4.5 - 1 = 3.5 \text{ sq. units}$$

38. Let the numerator be x and denominator be y
According to question,

$$\begin{aligned} y &= 5 + 2x \\ -2x + y &= 5 \end{aligned} \quad (i)$$

For the other equation,

$$\begin{aligned} \frac{x-1}{y-1} &= \frac{3}{8} \\ 8x - 8 &= 3y - 3 \\ 8x - 3y &= 5 \end{aligned} \quad (ii)$$

From (i), $y = 5 + 2x$

On putting this value of y in (ii), we get

$$8x - 3(5 + 2x) = 5$$

$$8x - 15 - 6x = 5$$

$$2x = 20$$

$$x = 10$$

$$\text{So, } y = 5 + 2(10)$$

$$= 25$$

$$\text{So, Fraction} = \frac{x}{y} = \frac{10}{25}$$

$$40. (a - b)x + (a + b)y = a^2 - 2ab - b^2$$

$$(a + b)x + (a + b)y = a^2 - b^2$$

$$\frac{x}{(a+b)(-a^2-b^2)-(a+b)} = \frac{y}{(a+b)(-a^2+2ab+b^2)-(a-b)(-a^2-b^2)} = \frac{1}{(a-b)(a+b)-(a+b)^2}$$

$$\frac{x}{-a^3-ab^2-a^2b-b^3} = \frac{y}{-a^3+2a^2b+ab^2-a^2b+2ab^2+b^3} = \frac{1}{a^2-b^2-a^2-b^2-2ab}$$

$$+a^3-2a^2b-ab^2+a^2b +a^3+ab^2-a^2b-b^3$$

$$-2ab^2-b^3$$

$$\frac{x}{-2b^3-2a^2b-4ab^2} = \frac{y}{4ab^2} = \frac{1}{-2b^2-2ab}$$

$$x = \frac{-2b^3-2a^2b-4ab^2}{-2b^2-2ab}$$

$$= \frac{-2b(b^2+a^2+2ab)}{-2b(b+a)}$$

$$= a + b$$

$$\text{Also, } \frac{y}{4ab^2} = \frac{1}{-2b(a+b)}$$

$$y = \frac{-2ab}{a+b}$$

$$39. mx - ny = m^2 + n^2$$

$$x + y = 2m$$

$$\frac{x}{2mn+m^2+n^2} = \frac{y}{-m^2-n^2+2m^2} = \frac{1}{m+n}$$

$$\frac{x}{(m+n)^2} = \frac{y}{m^2-n^2} = \frac{1}{m+n}$$

$$\frac{x}{(m+n)^2} = \frac{1}{m+n} \quad \left| \quad \frac{y}{m^2-n^2} = \frac{1}{m+n}$$

$$x = \frac{(m+n)^2}{m+n}$$

$$= m + n$$

$$y = \frac{m^2-n^2}{m+n}$$

$$= m - n$$

MULTIPLE CHOICE QUESTIONS

1. (b) As $x = -\frac{1}{2}$ is a solution of $3x^2 + 2kx - 3 = 0$

$$\therefore 3\left(-\frac{1}{2}\right)^2 + 2k\left(-\frac{1}{2}\right) - 3 = 0$$

$$\frac{3}{4} - k - 3 = 0$$

$$k = \frac{3}{4} - 3$$

$$= \frac{3-12}{4}$$

$$= \frac{-9}{4}$$

2. (b) Equation has no real roots if $D < 0$

i.e. $b^2 - 4ac < 0$

i.e. $b^2 - 4(l)(l) < 0$

i.e. $b^2 - 4 < 0$

i.e. $(b+2)(b-2) < 0$

i.e. $-2 < b < 2$

3. (d) let α, β be the roots then $\alpha\beta = 3$

$$\alpha\beta = 3$$

$$(l)\beta = 3 \quad (\therefore \alpha = l)$$

$$\alpha\beta = 3$$

4. (a) $3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$

$$D = b^2 - 4ac$$

$$= (10)^2 - 4(3\sqrt{3}/\sqrt{3})$$

$$= 100 - 36$$

$$= 64$$

5. (a) $x^2 - px - q = 0$

As p is the root

$$\therefore p^2 - p^2 + q = 0$$

$$\Rightarrow q = 0$$

Also, q is a root

$$\therefore q^2 - pq + q = 0$$

$$q(q - p + 1) = 0$$

$$q = 0 \quad \text{or} \quad q = p - 1$$

$$\therefore q = p - 1$$

$$\Rightarrow p = q + 1$$

$$= 0 + 1$$

$$= 1$$

$$\text{So, } p = 1, q = 0$$

WORKSHEET 1

Section A

1. $x^2 - 7x + 12$

$$x^2 - 3x - 4x + 12$$

$$x(x-3) - 4(x-3)$$

$$(x-3)(x-4)$$

2. $2x^2 + 3x - 4 = 0$

$$b^2 - 4ac = 9 - 4(2)(-4)$$

$$= 9 + 32$$

$$= 41 > 0$$

As $b^2 - 4ac > 0$

\Rightarrow The equation has real and distinct roots.

3. $3x^2 + 13x + 14 = 0$

$$\text{LHS} = 3x^2 + 13x + 14$$

$$= 3(-2)^2 + 13(-2) + 14 \quad (\text{put } x = -2)$$

$$= 12 - 26 + 14$$

$$= 0$$

$$= \text{RHS}$$

So, $x = -2$ is a root of $3x^2 + 13x + 4 = 0$

4. $x^2 - 3x - 1 = 0$

$$\text{LHS} = x^2 - 3x - 1$$

$$= 1^2 - 3(1) - 1 \quad (\text{Put } x = 1)$$

$$= 1 - 3 - 1$$

$$= -3 \neq \text{RHS} (= 0)$$

So, $x = 1$ is not a solution of equation $x^2 - 3x - 1 = 0$

5. $x^2 - 3x - 10 = 0$

$$D = b^2 - 4ac$$

$$= (-3)^2 - 4(1)(-10)$$

$$= 9 + 40$$

$$= 49$$

6. Let $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}} = x$

$$\sqrt{6 + x} = x$$

On squaring both sides, we get

$$6 + x = x^2$$

$$x^2 - x - 6 = 0$$

$$x^2 - 3x + 2x - 6 = 0$$

$$x(x - 3) + 2(x - 3) = 0$$

$$(x - 3)(x + 2) = 0$$

$$x = 3, x = -2$$

As value of $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$ cannot be negative, so, $x = 3$

7. $3x^2 - kx + 38 = 0$

The quadratic equation has equal roots

if $D = 0$

i.e. $b^2 - 4ac = 0$

i.e. $k^2 - 4(3)(38) = 0$

$$k^2 - 456 = 0$$

$$k^2 = 456$$

$$k = \pm 2\sqrt{114}$$

8. $bx^2 - 2\sqrt{ac}x + 6 = 0$

The equation has equal roots if discriminant = 0

i.e. $(2\sqrt{ac})^2 - 4(b)(b) = 0$

$$4ac - 4b^2 = 0$$

$$b^2 = ac$$

Section B

9. Using quadratic formula,

General form $ax^2 + bx + c = 0$

$$D = b^2 - 4ac$$

$$\text{Solution is } x = \frac{-b \pm \sqrt{D}}{2a}$$

Equation is $16x^2 - 24x - 1 = 0$

Where, $a = 16, b = -24, c = -1$

$$D = b^2 - 4a$$

$$D = (-24)^2 - 4(16)(-1)$$

$$D = 576 + 64$$

$$D = 640$$

$$\text{Solution is } x = \frac{-b \pm \sqrt{D}}{2a}$$

$$x = \frac{-(-24) \pm \sqrt{640}}{2(16)}$$

$$x = \frac{24 \pm 8\sqrt{10}}{16}$$

$$x = \frac{3 \pm \sqrt{10}}{4}$$

Therefore, the roots are $x = \frac{3 + \sqrt{10}}{4}, \frac{3 - \sqrt{10}}{4}$

10. $\frac{1}{x-2} + \frac{2}{x-1} = \frac{6}{x}$

$$\frac{x-1+2x-4}{(x-1)(x-2)} = \frac{6}{x}$$

$$x(3x-5) = 6(x-1)(x-2)$$

$$\begin{aligned}
 3x^2 - 5x &= 6(x^2 - 3x + 2) \\
 3x^2 - 5x &= 6x^2 - 18x + 12 \\
 0 &= 3x^2 - 13x + 12 \\
 0 &= 3x^2 - 9x - 4x + 12 \\
 0 &= 3x(x - 3) - 4(x - 3) \\
 0 &= (3x - 4)(x - 3) \\
 3x - 4 &= 0, \quad x - 3 = 0 \\
 x &= \frac{4}{3}, \quad x = 3
 \end{aligned}$$

11. $x^2 - 2ax + a^2 - b^2 = 0$

$$\begin{aligned}
 x^2 + [(-a - b) + (-a + b)]x + (a + b)(a - b) &= 0 \\
 x^2 - (a + b)x - (a - b)x + (a + b)(a - b) &= 0 \\
 x[x - (a + b)] - (a - b)[x - (a + b)] &= 0 \\
 [x - (a - b)][x - (a + b)] &= 0 \\
 x - (a - b) = 0 \quad \text{or} \quad x - (a + b) &= 0 \\
 x = a - b \quad \text{or} \quad x = a + b
 \end{aligned}$$

12. $4x^2 - 4a^2x + (a^4 - b^4) = 0$

$$\begin{aligned}
 4x^2 + [-2(a^2 - b^2) - 2(a^2 + b^2)]x + (a^4 - b^4) &= 0 \\
 4x^2 - 2(a^2 - b^2)x - 2(a^2 + b^2)x + (a^2 - b^2)(a^2 + b^2) &= 0 \\
 2x[2x - a^2 - b^2] - (a^2 + b^2)(2x - a^2 - b^2) &= 0 \\
 [2x - (a^2 - b^2)][2x - (a^2 + b^2)] &= 0 \\
 2x - (a^2 - b^2) = 0 \quad \text{or} \quad 2x(a^2 + b^2) &= 0 \\
 x = \frac{-b^2 + a^2}{2} \quad \text{or} \quad x = \frac{a^2 + b^2}{2}
 \end{aligned}$$

13. Given

$$(k - 12)x^2 - 2(k - 12)x + 2 = 0$$

Comparing with $a x^2 + b x + c = 0$ we get :
 $a = k - 12$, $b = -2(k - 12)$, $c = 2$

The equation has equal roots!

So $b^2 = 4ac$

$$\begin{aligned}
 \Rightarrow (-2(k - 12))^2 &= 2(k - 12) \\
 \Rightarrow (-2)^2(k - 12)^2 &= 2(k - 12)
 \end{aligned}$$

$$\begin{aligned}
 \Rightarrow 2(k^2 + 144 - 24k) &= k - 12 \\
 \Rightarrow 2k^2 + 288 - 48k &= k - 12 \\
 \Rightarrow 2k^2 - 49k + 300 &= 0 \\
 \Rightarrow 2k^2 - 25k - 24k + 300 &= 0 \\
 \Rightarrow k(2k - 25) - 12(2k - 25) &= 0 \\
 \Rightarrow (2k - 25)(k - 12) &= 0
 \end{aligned}$$

Either :

$$k - 12 = 0$$

$$\Rightarrow k = 12$$

or :

$$2k - 25 = 0$$

$$\Rightarrow 2k = 25$$

$$\Rightarrow k = \frac{25}{2} = 12.5$$

The value of k is 12 or 12.5

14. $12abx^2 - (9a^2 - 8b^2)x - 6ab = 0$

$$12abx^2 + (-9a^2 + 8b^2)x - 6ab = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-9a^2 + 8b^2) \pm \sqrt{(-9a^2 + 8b^2)^2 - 4(12ab)(-6ab)}}{2(12ab)}$$

$$x = \frac{-(-9a^2 + 8b^2) + \sqrt{(-9a^2 + 8b^2)^2 - 4(12ab)(-6ab)}}{2(12ab)}$$

$$\Rightarrow x = \frac{3a}{4b}$$

$$x = \frac{-(-9a^2 + 8b^2) - \sqrt{(-9a^2 + 8b^2)^2 - 4(12ab)(-6ab)}}{2(12ab)}$$

$$\Rightarrow x = \frac{-2b}{3a}$$

15. Let the two numbers be x and $16 - x$.

According to question,

$$\frac{1}{x} + \frac{1}{16 - x} = \frac{1}{3}$$

$$\frac{16 - x + x}{x(16 - x)} = \frac{1}{3}$$

$$48 = 16x - x^2$$

$$x^2 - 16x + 48 = 0$$

$$x^2 - 12x - 4x + 48 = 0$$

$$x(x-12) - 4(x-12) = 0$$

$$(x-4)(x-12) = 0$$

$$x = 4, 12$$

$$\text{If } x = 4, \text{ Other number} = 16 - 4 = 12$$

$$\text{if } x = 12, \text{ Other number} = 16 - 12 = 4$$

$$\begin{aligned} 16. \quad & x + \frac{1}{x} = 11 \frac{1}{11} \\ & \frac{x^2 + 1}{x} = \frac{122}{11} \\ & 11(x^2 + 1) = 122x \\ & 11x^2 - 122x + 11 = 0 \\ & 11x^2 - x - 121x + 11 = 0 \\ & x(11x - 1) - 11(11x - 1) = 0 \\ & (11x - 1)(x - 11) = 0 \\ & 11x - 1 = 0 \quad \text{or} \quad x - 11 = 0 \\ & x = \frac{1}{11} \quad \text{or} \quad x = 11 \end{aligned}$$

Section C

17. Let D_1 and D_2 be the discriminants of equations $x^2 + 2cx + ab = 0$ and $x^2 - 2(a + b)x + a^2 + b^2 + 2c^2 = 0$ respectively.

$$x^2 + 2cx + ab = 0$$

$$D_1 = (2c)^2 - 4(1)(ab)$$

$$= 4c^2 - 4ab$$

$$= 4(c^2 - ab)$$

As roots are real and unequal,

$$\text{so } D_1 > 0$$

$$c^2 - ab > 0 \quad (\text{i})$$

$$x^2 - 2(a + b)x + a^2 + b^2 + 2c^2 = 0$$

$$D_2 = 4(a + b)^2 - 4(1)(a^2 + b^2 + 2c^2)$$

$$= 8ab - 8c^2$$

$$= -8(c^2 - ab) < 0 \quad [\text{From (i)}]$$

So, the given equation has no real roots.

$$18. \quad \frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$

$$\frac{x-7-x-4}{(x+4)(x-7)} = \frac{11}{30}$$

$$\frac{-11}{x^2 - 3x - 28} = \frac{11}{30}$$

$$\frac{-1}{x^2 - 3x - 28} = \frac{1}{30}$$

$$x^2 - 3x - 28 + 30 = 0$$

$$x^2 - 3x + 2 = 0$$

$$x^2 - 2x - x + 2 = 0$$

$$x(x-2) - 1(x-2) = 0$$

$$(x-1)(x-2) = 0$$

$$x = 1, 2$$

19. Let the smaller side and larger side be x cm and y cm respectively.

$$\text{Hypotenuse} = 3\sqrt{5} \text{ cm}$$

$$\text{So, } x^2 + y^2 = (3\sqrt{5})^2$$

$$x^2 + y^2 = 45 \quad (\text{i})$$

If smaller side is tripled and the larger side is doubled,

$$(3x)^2 + (2y)^2 = (15)^2$$

$$9x^2 + 4y^2 = 225 \quad (\text{ii})$$

$$\text{From (i), } x^2 = 45 - y^2$$

$$\text{So, we get } 9(45 - y^2) + 4y^2 = 225$$

$$405 - 9y^2 + 4y^2 = 225$$

$$5y^2 = 180$$

$$y^2 = \frac{180}{5} = 36$$

$$y = \pm 6$$

$$\text{For } y = -6, \quad x^2 = 45 - 36 = 9$$

$$x = \pm 3$$

$$\text{For } y = 6, \quad x^2 = 45 - 36 = 9$$

$$x = \pm 3$$

As length cannot be negative,

So, $y = -6, x = -3$ rejected

$$\therefore x = 3, y = 6$$

Length of smaller side = 3 cm

Length of larger side = 6 cm

20. As $x = -2$ is a root of equation

$3x^2 + 7x + p = 0$, we have

$$3(-2)^2 + 7(-2) + p = 0$$

$$12 - 14 + p = 0$$

$$p = 2$$

$$x^2 + k(4x + k - 1) + p = 0$$

$$x^2 + k(4x + k - 1) + 2 = 0 \quad (\text{Put } p = 2)$$

$$x^2 + (4k)x + k^2 - k + 2 = 0$$

As roots are equal,

$$\text{Discriminant (D)} = 0$$

$$(4k)^2 - 4(k^2 - k + 2) = 0$$

$$16k^2 - 4k^2 + 4k - 8 = 0$$

$$12k^2 + 4k - 8 = 0$$

$$3k^2 + k - 2 = 0$$

$$3k^2 + 3k - 2k - 2 = 0$$

$$3k(k + 1) - 2(k + 1) = 0$$

$$(3k - 2)(k + 1) = 0$$

$$3k - 2 = 0 \quad \text{or} \quad k + 1 = 0$$

$$k = \frac{2}{3} \quad \text{or} \quad k = -1$$

$$21. x^2(a^2 + b^2) + 2(ac + bd)x + (c^2 + d^2) = 0$$

Consider

Discriminant (D)

$$= 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2)$$

$$= 4(a^2c^2 + b^2d^2 + 2abcd) - 4(a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2)$$

$$= 8abcd - 4a^2d^2 - 4b^2c^2$$

$$= -4[(ad)^2 + (bc)^2 - 2abcd]$$

$$= -4(ad - bc)$$

$$\leq 0$$

For no real roots, $D < 0$

i.e. $D \neq 0$ i.e. $ad \neq bc$

22. As 2 is a root of the quadratic equation

$$3x^2 + px - 8 = 0,$$

$$3(2)^2 + p(2) - 8 = 0$$

$$12 + 2p - 8 = 0$$

$$2p = -4$$

$$p = -2$$

∴ Other equation becomes

$$4x^2 - 2(-2)x + k = 0$$

$$4x^2 + 4x + k = 0$$

As roots are equal,

$$\text{Discriminant (D)} = 0$$

$$\text{i.e. } 16 - 4(4)(k) = 0$$

$$16 - 16k = 0$$

$$k = 1$$

$$23. (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$$

$$\Rightarrow x^2 - bx - ax + ab + x^2 - cx - bx + bc + x^2 - ax - cx + ac = 0$$

$$\Rightarrow 3x^2 - 2bx - 2ax - 2cx + ab + bc + ca = 0$$

$$\Rightarrow 3x^2 - 2(a + b + c)x + (ab + bc + ca) = 0$$

Discriminant (D)

$$= 4(a + b + c)^2 - 12(ab + bc + ca)$$

$$= 4(a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - 3ab - 3bc - 3ca)$$

$$= 4(a^2 + b^2 + c^2 - ab - bc - ca)$$

$$= 2(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac)$$

$$= 2[(a - b)^2 + (b - c)^2 + (a - c)^2]$$

$$D = 2[(a - b)^2 + (b - c)^2 + (a - c)^2] \geq 0$$

As $D \geq 0$, so roots are real.

Roots are equal if $D = 0$

$$\text{i.e. } 2[(a - b)^2 + (b - c)^2 + (a - c)^2] = 0$$

$$\text{i.e. } a - b = 0, b - c = 0, a - c = 0,$$

$$a = b, \quad b = c, \quad a = c$$

$$\text{i.e. } a = b = c.$$

24. Let the two numbers be x and y such that $x > y$.

$$x - y = 3 \quad (\text{i})$$

$$\text{Also, } \frac{1}{y} - \frac{1}{x} = \frac{3}{28} \quad (\text{ii})$$

$$\text{From (i), } x = 3 + y$$

Putting in (ii), we get

$$\frac{1}{y} - \frac{1}{3+y} = \frac{3}{28}$$

$$\frac{3+y-y}{y(3+y)} = \frac{3}{28}$$

$$\frac{3}{y(3+y)} = \frac{3}{28}$$

$$28 = y^2 + 3y$$

$$y^2 + 3y - 28 = 0$$

$$y^2 + 7y - 4y - 28 = 0$$

$$y(y+7) - 4(y+7) = 0$$

$$(y-4)(y+7) = 0$$

$$y = 4, -7$$

As y is a natural number,

$$y = -7 \text{ is rejected}$$

$$\text{So, } y = 4$$

$$\therefore x = 3 + y = 7$$

Section D

$$25. \quad \frac{x-2}{x-3} + \frac{x-4}{x-5} = \frac{10}{3}$$

$$\frac{(x-2)(x-5) + (x-3)(x-4)}{(x-3)(x-5)} = \frac{10}{3}$$

$$\frac{x^2 - 7x + 10 + x^2 - 7x + 12}{x^2 - 8x + 15} = \frac{10}{3}$$

$$\frac{2x^2 - 14x + 22}{x^2 - 8x + 15} = \frac{10}{3}$$

$$\frac{x^2 - 7x + 11}{x^2 - 8x + 15} = \frac{5}{3}$$

$$3x^2 - 21x + 33 = 5x^2 - 40x + 75$$

$$0 = 2x^2 - 19x + 42$$

$$0 = 2x^2 - 12x - 7x + 42$$

$$0 = 2x(x-6) - 7(x-6)$$

$$0 = (2x-7)(x-6)$$

$$(2x-7)(x-6) = 0$$

$$2x-7 = 0 \quad \text{or} \quad x-6 = 0$$

$$x = \frac{7}{2} \quad \text{or} \quad x = 6$$

26. Let speed of stream be x km/hr

Speed of boat in still water = 18 km/hr

So, Speed of boat downstream = $(18 + x)$ km/hr

Speed of boat upstream = $(18 - x)$ km/hr

According to equation,

$$\frac{24}{18-x} = \frac{24}{18+x} + 1 \quad \text{up} = D + I$$

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

$$\frac{18+x-18-x}{(18-x)(18+x)} = \frac{1}{24}$$

$$\frac{2x}{324-x^2} = \frac{1}{24}$$

$$324 - x^2 = 48x$$

$$x^2 + 48x - 324 = 0$$

$$x^2 + 54x - 6x - 324 = 0$$

$$x(x+54) - 6(x+54) = 0$$

$$(x-6)(x+54) = 0$$

$$x = 6, -54$$

As speed cannot be negative,

$x = -54$ is rejected.

So, $x = 6$

\therefore Speed of stream = 6 km/hr

27. $3\left(\frac{3x-1}{2x+3}\right) - 2\left(\frac{2x+3}{3x-1}\right) = 5$

Let $\frac{3x-1}{2x+3} = y$

So, equation becomes

$$3y - \frac{2}{y} = 5$$

$$3y^2 - 2 = 5y$$

$$3y^2 - 5y - 2 = 0$$

$$3y^2 - 6y + y - 2 = 0$$

$$3y(y-2) + 1(y-2) = 0$$

$$(3y+1)(y-2) = 0$$

$$3y+1=0 \quad \text{or} \quad y-2=0$$

$$y = -\frac{1}{3} \quad \text{or} \quad y = 2$$

$$y = -\frac{1}{3}$$

$$\frac{3x-1}{2x+3} = -\frac{1}{3}$$

$$9x-3 = -2x-3$$

$$11x = 0$$

$$x = 0$$

$$y = 2$$

$$\frac{3x-1}{2x+3} = 2$$

$$3x-1 = 4x+6$$

$$x = -7$$

28. Let original speed of the aircraft be x km/hr.

be x km/hr.

$$\therefore \text{New speed} = (x-200) \text{ km/hr.}$$

Duration of flight at original speed

$$= \frac{600}{x} \text{ hours}$$

Duration of flight at reduced speed

$$= \frac{600}{x-200} \text{ hours}$$

According to question,

$$\frac{600}{x-200} = \frac{1}{2} + \frac{600}{x}$$

$$\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$$

$$\frac{1}{x-200} - \frac{1}{x} = \frac{1}{1200}$$

$$\frac{x-x+200}{x(x-200)} = \frac{1}{1200}$$

$$x^2 - 200x = 240000$$

$$x^2 - 200x - 240000 = 0$$

$$x(x-600) + 400(x-600) = 0$$

$$(x+400)(x-600) = 0$$

$$x = -400 \quad \text{or} \quad x = 600$$

As x , being speed of aircraft can't be negative.

$$\therefore x = 600$$

\therefore Original speed of aircraft = 600 km/hr

$$\text{Duration of flight} = \frac{600}{600} = 1 \text{ hour}$$

29. Let the usual speed of plane be x km / hr

$$\therefore \text{Time taken} = \frac{1500}{x} \text{ hours}$$

New speed = $x + 250$ km / hr

$$\therefore \text{Time taken} = \frac{1500}{x+250} \text{ km / hr}$$

According to question,

$$\frac{1500}{x+250} = \frac{1500}{x} - \frac{1}{2}$$

$$\frac{1500}{x} - \frac{1500}{x+250} = \frac{1}{2}$$

$$\frac{1}{x} - \frac{1}{x+250} = \frac{1}{3000}$$

$$\frac{x+250-x}{x(x+250)} = \frac{1}{3000}$$

$$x^2 + 250x = 750000$$

$$x^2 + 250x - 750000 = 0$$

$$x^2 + 1000x - 750x - 750000 = 0$$

$$x(x+1000) - 750(x+1000) = 0$$

$$(x-750)(x+1000) = 0$$

$$x = 750 \quad \text{or} \quad x = -1000$$

Now, x being the speed of plane cannot be negative,

$x = -1000$ is rejected

So, $x = 750$

\therefore Speed of plane = 750 km/hr

30. Let total number of camels be x .

According to question

$$\frac{1}{4}x + 2\sqrt{x} + 15 = x$$

$$2\sqrt{x} + 15 = x - \frac{x}{4}$$

$$2\sqrt{x} + 15 = \frac{3x}{4}$$

$$8\sqrt{x} + 60 = 3x$$

$$3x - 8\sqrt{x} - 60 = 0$$

$$3(\sqrt{x})^2 - 8\sqrt{x} - 60 = 0$$

$$\text{Let } \sqrt{x} = y$$

$$3y^2 - 8y - 60 = 0$$

$$3y^2 - 18y + 10y - 60 = 0$$

$$3y(y - 6) + 10(y - 6) = 0$$

$$(3y + 10)(y - 6) = 0$$

$$y = -\frac{10}{3} \text{ or } y = 6$$

Now,

$y = -\frac{10}{3}$ is rejected as number of camels can

not be negative,

So, $y = 6$

i.e. $\sqrt{x} = 6$

$\therefore x = 36$

So, total number of camels = 36

31. Let Varun's age be x years and Nihal's age be y years.

According to question.

$$x - 7 = 5(y - 7)^2$$

$$x - 7 = 5(y - 7)^2 \quad (\text{i})$$

For second equation,

$$y + 3 = \frac{2}{5}(x + 3)$$

$$5y + 15 = 2x + 6$$

$$2x - 5y = 9 \quad (\text{ii})$$

$$\text{From (ii), } x = \frac{9 + 5y}{2}$$

Putting in (i), we get

$$\frac{9 + 5y}{2} - 7 = 5(y - 7)^2$$

$$9 + 5y - 14 = 10(y^2 + 49 - 14y)$$

$$5y - 5 = 10(y^2 + 49 - 14y)$$

$$y - 1 = 2(y^2 + 49 - 14y)$$

$$y - 1 = 2y^2 + 98 - 28y$$

$$2y^2 - 29y + 99 = 0$$

$$y = \frac{29 \pm \sqrt{841 - 8(99)}}{4}$$

$$y = \frac{29 \pm \sqrt{49}}{4}$$

$$y = \frac{29 \pm 7}{4}$$

$$y = \frac{29 + 7}{4}, \quad y = \frac{29 - 7}{4}$$

$$y = 9, \quad y = \frac{11}{2}$$

Now, $y = \frac{11}{2}$ is rejected

So, $y = 9$

\therefore Nihal's age = 9 years

$$\text{Varun's age} = \frac{9 + 5y}{2}$$

$$= \frac{9 + 45}{2}$$

$$= 27 \text{ years}$$

$$32. \quad \frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{x - (a+b+x)}{x(a+b+x)} = \frac{a+b}{ab}$$

$$\frac{-(a+b)}{x(a+b+x)} = \frac{a+b}{ab}$$

$$\frac{-1}{x(a+b+x)} = \frac{1}{ab}$$

$$x(a+b+x) + ab = 0$$

$$xa + xb + x^2 + ab = 0$$

$$x^2 + xa + xb + ab = 0$$

$$x(x+a) + b(x+a) = 0$$

$$(x+a)(x+b) = 0$$

$$x = -a \quad \text{or} \quad x = -b$$

WORKSHEET 2

Section A

1. $LHS = x^2 - 3\sqrt{3}x + 6$
 $= (-2\sqrt{3})^2 - 3\sqrt{3}(-2\sqrt{3}) + 6$
 $= 12 + 18 + 6$
 $= 36$
 $\neq RHS (= 0)$

So, $x = -2\sqrt{3}$ is not a solution of the given equation.

2. As $x = -\frac{1}{2}$ is a solution of $3x^2 + 2kx - 3 = 0$,

$$3\left(-\frac{1}{2}\right)^2 + 2k\left(-\frac{1}{2}\right) - 3 = 0$$

$$\frac{3}{4} - k - 3 = 0$$

$$k = \frac{3}{4} - 3 = \frac{-9}{4}$$

3. Let the two consecutive positive integers be $x, x + 1$.

According to question,

$$x(x+1) = 240$$

$$x^2 + x - 240 = 0$$

4. $x^2 + 6x + 5 = 0$

$$x^2 + 5x + x + 5 = 0$$

$$x(x+5) + 1(x+5) = 0$$

$$(x+1)(x+5) = 0$$

$$x+1 = 0 \quad \text{or} \quad x+5 = 0$$

$$x = -1 \quad \text{or} \quad x = -5$$

5. $x + \frac{2}{x} = 3$

$$x^2 + 2 = 3x$$

$$x^2 - 3x + 2 = 0$$

$$x(x-2) - 1(x-2) = 0$$

$$(x-1)(x-2) = 0$$

$$x = 1, 2$$

6. $\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$

$$\text{Discriminant} = (-2\sqrt{2})^2 - 4(\sqrt{3})(-2\sqrt{3})$$

$$= 8 + 24$$

$$= 32$$

7. $2x^2 + 5\sqrt{3}x + 6 = 0$

$$\text{Discriminant (D)} = (5\sqrt{3})^2 - 4(2)(6)$$

$$= 75 - 48$$

$$= 27 > 0$$

So, the given equation has real roots.

8. $abx^2 + (b^2 - ac)x - bc = 0$
 $abx^2 + b^2x - acx - bc = 0$
 $bx(ax + b) - c(ax + b) = 0$
 $(bx - c)(ax + b) = 0$
 $bx - c = 0 \quad \text{or} \quad ax + b = 0$
 $x = \frac{c}{b} \quad \text{or} \quad x = -\frac{b}{a}$

9. Compare given Quadratic equation $2x^2 - kx + k = 0$ with $ax^2 + bx + c = 0$, we get

$$a = 2, b = -k, c = k$$

$$\text{Discriminant (D)} = 0$$

[Given roots are equal]

$$\Rightarrow b^2 - 4ac = 0$$

$$\Rightarrow (-k)^2 - 4 \times 2 \times k = 0$$

$$\Rightarrow k^2 - 8k = 0$$

$$\Rightarrow k(k - 8) = 0$$

$$\Rightarrow k = 0 \text{ or } k = 8$$

$$10. \quad x^2 + \left(a + \frac{1}{a}\right)x + 1 = 0$$
$$ax^2 + (a^2 + 1)x + a = 0$$
$$ax^2 + a^2x + x + a = 0$$
$$ax(x + a) + 1(x + a) = 0$$
$$(ax + 1)(x + a) = 0$$
$$ax + 1 = 0 \quad \text{or} \quad x + a = 0$$
$$x = -\frac{1}{a} \quad \text{or} \quad x = -a$$

Section B

11. As $x = \frac{2}{3}$ is a root of equation

$$ax^2 + 7x + b = 0$$

$$a\left(\frac{2}{3}\right)^2 + 7\left(\frac{2}{3}\right) + b = 0$$
$$\frac{4}{9}a + \frac{14}{3} + b = 0$$
$$\frac{4a + 42 + 9b}{9} = 0$$

$$4a + 9b = -42 \quad (i)$$

As $x = -3$ is a root of equation

$$ax^2 + 7x + b = 0$$

$$9a - 21 + b = 0$$

$$9a + b = 21 \quad (ii)$$

From (ii), $b = 21 - 9a$

Putting in (i), we get

$$4a + 9(21 - 9a) = -42$$

$$4a + 189 - 81a = -42$$

$$189 + 42 = 81a - 4a$$

$$231 = 77a$$

$$a = 3$$

$$\text{So, } b = 21 - 9(3)$$

$$= 21 - 27$$

$$= -6$$

12. As -5 is a root of equation

$$px^2 + px + k = 0$$

$$p(-5)^2 + p(-5) + k = 0$$

$$25p - 5p + k = 0$$

$$20p + k = 0 \quad (i)$$

Also, as equation has equal roots,

$$\text{Discriminant} = 0$$

$$p^2 - 4pk = 0$$

$$p(p - 4k) = 0$$

$$p = 0 \quad \text{or} \quad p = 4k$$

$$\text{if } p = 0, \quad 20(0) + k = 0$$

$$k = 0$$

$$\text{if } p = 4k, \quad 20(4k) + k = 0$$

$$k = 0$$

$$13. \quad \sqrt{2x+9} + x = 13$$

$$\sqrt{2x+9} = 13 - x$$

Squaring both sides

$$2x + 9 = 169 + x^2 - 26x$$

$$x^2 - 28x + 160 = 0$$

$$x^2 - 20x - 8x + 160 = 0$$

$$x(x - 20) - 8(x - 20) = 0$$

$$(x - 8)(x - 20) = 0$$

$$x = 8 \quad \text{or} \quad x = 20$$

If $x = 20$

$$\text{LHS} = \sqrt{40+9} + 20 = 27 \neq \text{RHS} (= 13)$$

So, $x = 20$ is rejected

If $x = 8$,

$$\begin{aligned}
 \text{LHS} &= \sqrt{16+9} + 8 \\
 &= 5 + 8 \\
 &= 13 \\
 &= \text{RHS}
 \end{aligned}$$

Therefore, $x = 8$

14. $9x^2 - 6b^2x - (a^4 - b^4) = 0$

$$\begin{aligned}
 9x^2 + [-3(b^2 - a^2) - 3(b^2 + a^2)]x + (-a^4 + b^4) \\
 = 0
 \end{aligned}$$

$$9x^2 - 3(b^2 - a^2)x - 3(b^2 + a^2)x + (a^2 + b^2)(-a^2 + b^2) = 0$$

$$3x[3x - (b^2 - a^2)] - (a^2 + b^2)[3x - (b^2 - a^2)] = 0$$

$$[3x - (a^2 + b^2)][3x - (b^2 - a^2)] = 0$$

$$x = \frac{a^2 + b^2}{3} \quad \text{or} \quad x = \frac{b^2 - a^2}{3}$$

15.

$$\begin{aligned}
 \frac{4}{x} - 3 &= \frac{5}{2x+3} \\
 \frac{4-3x}{x} &= \frac{5}{2x+3} \\
 (4-3x)(2x+3) &= 5x
 \end{aligned}$$

$$8x + 12 - 6x^2 - 9x = 5x$$

$$6x^2 + 6x - 12 = 0$$

$$x^2 + x - 2 = 0$$

$$x^2 + 2x - x - 2 = 0$$

$$x(x+2) - 1(x+2) = 0$$

$$(x-1)(x+2) = 0$$

$$x = 1, -2$$

16. $\sqrt{2}y^2 + 7y + 5\sqrt{2} = 0$

$$\sqrt{2}y^2 + 2y + 5y + 5\sqrt{2} = 0$$

$$\sqrt{2}y(y + \sqrt{2}) + 5(y + \sqrt{2}) = 0$$

$$(y + \sqrt{2})(\sqrt{2}y + 5) = 0$$

$$y + \sqrt{2} = 0 \quad \text{or} \quad \sqrt{2}y + 5 = 0$$

$$y = -\sqrt{2} \quad \text{or} \quad y = -\frac{5}{\sqrt{2}}$$

17. Roots of the equation are equal if Discriminant (D) = 0

$$mx(6x + 10) + 25 = 0$$

$$6mx^2 + 10mx + 25 = 0$$

$$D = 0$$

$$(10m)^2 - 4(6m)25 = 0$$

$$100m^2 - 600m = 0$$

$$100m(m-6) = 0$$

$$m = 0, 6$$

For $m = 0$, equation will become $25 = 0$, which is not possible

So, $m = 6$

18. Given 4 roots $3x^2 + 5x - 2\sqrt{3}$

The above given education can be written as under:

$$4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$$

$$4\sqrt{3}x^2 + 8x - 3x - 2\sqrt{3} = 0$$

$$4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2) = 0$$

$$(\sqrt{3}x + 2)(4x - \sqrt{3}) = 0$$

$$(\sqrt{3}x + 2) = 0 \quad \text{or} \quad (4x - \sqrt{3}) = 0$$

$$x = \frac{2}{\sqrt{3}} \quad \text{or} \quad x = \frac{\sqrt{3}}{4}$$

19. Let x be the side of square.

So, area of square = x^2

Number of students = $x^2 + 24$

If side of a square is increased by one student, side = $x + 1$

So, number of students = $(x + 1)^2 - 25$

According to question,

$$x^2 + 24 = (x + 1)^2 - 25$$

$$x^2 + 24 = x^2 + 1 + 2x - 25$$

$$48 = 2x$$

$$x = 24$$

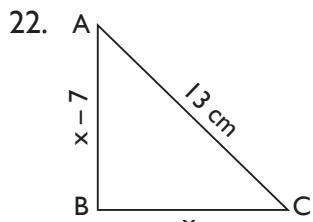
$$\begin{aligned}
 \therefore \text{Number of students} &= x^2 + 24 \\
 &= (24)^2 + 24 \\
 &= 576 + 24 \\
 &= 600
 \end{aligned}$$

$$\begin{aligned}
 20. \quad 4x^2 + 3x + 5 &= 0 \\
 \Rightarrow x^2 + \frac{3}{4}x + \frac{5}{4} &= \\
 \Rightarrow x^2 + \frac{3}{4}x + \left(\frac{3}{8}\right)^2 &= \frac{-5}{4} + \frac{9}{64} \\
 \Rightarrow \left(x + \frac{3}{8}\right)^2 &= \frac{-71}{64} \\
 \Rightarrow x + \frac{3}{8} &= \sqrt{\frac{-71}{64}} \text{ not a real no.}
 \end{aligned}$$

Hence, QE has no real roots.

Section C

$$\begin{aligned}
 21. \quad (x-5)(x-6) &= \frac{25}{(24)^2} \\
 x^2 - 11x + 30 &= \frac{25}{576} \\
 x^2 - 11x + 30 - \frac{25}{576} &= 0 \\
 x^2 - 11x + \frac{17255}{576} &= 0 \\
 576x^2 - 6336x + 17255 &= 0 \\
 576x^2 - 2856x - 3480x + 17255 &= 0 \\
 24x(24x - 119) - 145(24x - 119) &= 0 \\
 (24x - 145)(24x - 119) &= 0 \\
 24x - 145 = 0 \quad \text{or} \quad 24x - 119 = 0 \\
 x = \frac{145}{24} \quad \text{or} \quad x = \frac{119}{24}
 \end{aligned}$$



Let the base of $\triangle ABC = x$ cm

\therefore Altitude of $\triangle ABC = (x - 7)$ cm

We know that,

$$(\text{Hypotenuse})^2 = (\text{Base})^2 + (\text{Perpendicular})^2$$

$$AC^2 = AB^2 + BC^2$$

$$(13)^2 = (x - 7)^2 + x^2$$

$$169 = x^2 + 49 - 14x + x^2$$

$$2x^2 - 14x - 120 = 0$$

$$x^2 - 7x - 60 = 0$$

$$x^2 - 12x + 5x - 60 = 0$$

$$x(x - 12) + 5(x - 12) = 0$$

$$(x + 5)(x - 12) = 0$$

$$x = -5, 12$$

Since, side cannot be negative,

$\therefore x = -5$ is rejected

$$\therefore x = 12$$

$$BC = x = 12 \text{ cm}$$

$$AB = x - 7 = 12 - 7 = 5 \text{ cm}$$

$$23. \quad (a-b)x^2 + (b-c)x + (c-a) = 0$$

As roots of equation are equal,

$$\text{Discriminant (D)} = 0$$

$$(b-c)^2 - 4(a-b)(c-a) = 0$$

$$(b^2 + c^2 - 2bc) - 4(ac - a^2 - bc + ab) = 0$$

$$\Rightarrow 4a^2 + b^2 + c^2 - 4ac + 2bc - 4ab = 0$$

$$\Rightarrow (2a)^2 + b^2 + c^2 - 4ac + 2bc - 4ab = 0$$

$$\Rightarrow (-2a + b + c)^2 = 0$$

$$\Rightarrow -2a + b + c = 0$$

$$\Rightarrow 2a = b + c$$

$$24. \quad \text{Let the sides of two squares be } x \text{ and } y$$

$$\text{Area of square with side } x = x^2$$

$$\text{Area of square with side } y = y^2$$

$$\text{Perimeter of square with side } x = 4x$$

$$\text{Perimeter of square with side } y = 4y$$

According to question,

$$\begin{aligned} x^2 + y^2 &= 468 & (i) \\ 4x - 4y &= 24 \\ \text{i.e. } x - y &= 6 & (ii) \end{aligned}$$

From (ii), $x = 6 + y$

On putting in (i), we get

$$\begin{aligned} (6 + y)^2 + y^2 &= 468 \\ 36 + y^2 + 12y + y^2 &= 468 \end{aligned}$$

$$2y^2 + 12y - 432 = 0$$

$$y^2 + 6y - 216 = 0$$

$$y^2 - 12y + 18y - 216 = 0$$

$$y(y - 12) + 18(y - 12) = 0$$

$$(y - 12)(y + 18) = 0$$

$$y = 12, -18$$

As side cannot be negative,

$$y = -18 \text{ is rejected}$$

$$\therefore y = 12$$

$$\begin{aligned} \text{So, } x &= 6 + y \\ &= 6 + 12 \\ &= 18 \end{aligned}$$

So, sides of two squares are 12m and 18m respectively.

$$\begin{aligned} 25. \quad a^2 x^2 - 3abx + 2b^2 &= 0 \\ (ax)^2 - 2\left(\frac{3}{2}\right)abx + 2b^2 &= 0 \\ (ax)^2 - 2ax\left(\frac{3b}{2}\right) + 2b^2 &= 0 \\ (ax)^2 - 2ax\left(\frac{3b}{2}\right) + \left(\frac{3b}{2}\right)^2 + 2b^2 - \left(\frac{3b}{2}\right)^2 &= 0 \\ \left(ax - \frac{3b}{2}\right)^2 + 2b^2 - \frac{9}{4}b^2 &= 0 \\ \left(ax - \frac{3b}{2}\right)^2 - \frac{b^2}{4} &= 0 \\ \left(ax - \frac{3b}{2}\right)^2 &= \frac{b^2}{4} \\ ax - \frac{3b}{2} &= \pm \frac{b}{2} \end{aligned}$$

$$\begin{aligned} ax - \frac{3b}{2} &= \frac{b}{2} & ax - \frac{3b}{2} &= -\frac{b}{2} \\ ax = \frac{4b}{2} &= 2b & ax = -\frac{b}{2} + \frac{3b}{2} &= b \\ x = \frac{2b}{a} & & x = \frac{b}{a} & \end{aligned}$$

$$\begin{aligned} 26. \quad \frac{2x}{x-3} + \frac{1}{2x+3} + \frac{3x+9}{(x-3)(2x+3)} &= 0 \\ \Rightarrow \frac{2x(2x+3) + (x-3) + 3x+9}{(x-3)(2x+3)} &= 0 \\ \Rightarrow 2x(2x+3) + (x-3) + 3x+9 &= 0 \\ \Rightarrow 4x^2 + 6x + x - 3 + 3x + 9 &= 0 \\ \Rightarrow 4x^2 + 10x + 6 &= 0 \\ \Rightarrow 4x^2 + 4x + 6x + 6 &= 0 \\ \Rightarrow 4x(x+1) + 6(x+1) &= 0 \\ \Rightarrow (4x+6)(x+1) &= 0 \\ \Rightarrow 4x+6 &= 0 \quad \text{or} \quad x+1 = 0 \\ \Rightarrow x = -\frac{3}{2} & \quad \text{or} \quad x = -1 \end{aligned}$$

27. Let the three consecutive natural numbers be $x - 1, x$ and $x + 1$.

According to equation,

$$x^2 = [(x+1)^2 - (x-1)^2] + 60$$

$$x^2 = x^2 + 1 + 2x - x^2 - 1 + 2x + 60$$

$$x^2 = 4x + 60$$

$$x^2 - 4x - 60 = 0$$

$$x^2 - 10x + 6x - 60 = 0$$

$$x(x-10) + 6(x-10) = 0$$

$$(x+6)(x-10) = 0$$

$$x = -6 \text{ or } 10$$

As x is a natural number,

$$x = -6 \text{ or } 10$$

As x is a natural number,

$$x = -6 \text{ is rejected}$$

$$\text{So, } x = 10$$

\therefore The three numbers 9, 10, 11.

28. Let the time taken by smaller tap to fill tank completely = x hours

\therefore Time taken by larger tap to fill tank completely = $x - 8$ hours

According to question,

$$\frac{1}{x} + \frac{1}{x-8} = \frac{5}{48}$$

$$\frac{x-8+x}{x(x-8)} = \frac{5}{48}$$

$$\frac{2x-8}{x(x-8)} = \frac{5}{48}$$

$$48(2x-8) = 5x(x-8)$$

$$96x - 384 = 5x^2 - 40x$$

$$5x^2 - 136x + 384 = 0$$

$$5x^2 - 16x - 120x + 384 = 0$$

$$x(5x - 16) - 24(5x - 16) = 0$$

$$(x - 24)(5x - 16) = 0$$

$$x = 24 \quad \text{or} \quad \frac{16}{5}$$

For $x = 24$

Time taken by smaller tap = 24 hours

Time taken by larger tap = $x - 8$

$$= 24 - 8$$

$$= 16 \text{ hours}$$

$$\text{For } x = \frac{16}{5}$$

Time taken by larger pipe = $x - 8$

$$= \frac{16}{5} - 8$$

$$= -\frac{24}{5}$$

Since time cannot be negative,

$$x = \frac{16}{5} \text{ is rejected.}$$

29. $9x^2 - 63x - 162 = 0$

$$\begin{aligned} \text{Discriminant (D)} &= (-63)^2 - 4(9)(-162) \\ &= 3969 + 5832 \\ &= 9801 \end{aligned}$$

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

$$= \frac{63 \pm \sqrt{9801}}{18}$$

$$= \frac{63 \pm 99}{18}$$

$$x = \frac{63+99}{18} \quad \text{or} \quad x = \frac{63-99}{18}$$

$$x = 9 \quad \text{or} \quad x = -2$$

30. Let the larger part be x .

\therefore Smaller part = $16 - x$

According to question,

$$2(x)^2 = (16 - x)^2 + 164$$

$$2x^2 = 256 + x^2 - 32x + 164$$

$$x^2 + 32x - 420 = 0$$

$$x^2 + 42x - 10x - 420 = 0$$

$$x(x + 42) - 10(x + 42) = 0$$

$$(x - 10)(x + 42) = 0$$

$$x = 10 \quad \text{or} \quad -42$$

$x = -42$ is rejected as $x < 0$.

$$\therefore x = 10$$

So, the required parts are 10 and 6.

Section D

$$31. \quad \frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$$

$$\frac{1}{2a+b+2x} - \frac{1}{2x} = \frac{1}{b} + \frac{1}{2a}$$

$$\frac{2x - 2a - b - 2x}{2x(2a+b+2x)} = \frac{2a+b}{2ab}$$

$$\frac{-2a - b}{2x(2a+b+2x)} = \frac{2a+b}{2ab}$$

$$\frac{-1}{2x(2a+b+2x)} = \frac{1}{2ab}$$

$$\frac{-1}{x(2a+b+2x)} = \frac{1}{ab}$$

$$x(2a+b+2x) + ab = 0$$

$$2x^2 + 2ax + bx + ab = 0$$

$$2x(x + a) + b(x + a) = 0$$

$$(2x + b)(x + a) = 0$$

$$x = \frac{-b}{2}, -a$$

32. Let number of books = x

$$\therefore \text{Cost of each book} = \frac{80}{x}$$

According to question,

$$\frac{80}{x+4} = \frac{80}{x} - 1$$

$$\frac{80}{x} - \frac{80}{x+4} = 1$$

$$\frac{1}{x} - \frac{1}{x+4} = \frac{1}{80}$$

$$\frac{x+4-x}{x(x+4)} = \frac{1}{80}$$

$$\frac{1}{x(x+4)} = \frac{1}{320}$$

$$x^2 + 4x - 320 = 0$$

$$x^2 - 16x + 20x - 320 = 0$$

$$x(x - 16) + 20(x - 16) = 0$$

$$(x - 16)(x + 20) = 0$$

$$x = 16 \text{ or } x = -20$$

Since, number of books cannot be negative,
 $x = 16$

So, number of books = 16

33. Let original duration of flight = x hours

$$\text{Speed of an aircraft} = \frac{2800}{x} \text{ km/hr}$$

If time increased by 30 minutes

$$\text{i.e. } \frac{1}{2} \text{ hour, speed} = \frac{2800}{x + \frac{1}{2}}$$

According to question,

$$\frac{2800}{x + \frac{1}{2}} = \frac{2800}{x} - 100$$

$$\frac{2800}{x} - \frac{2800}{2x+1} = 100$$

$$\frac{2800}{x} - \frac{5600}{2x+1} = 100$$

$$\frac{28}{x} - \frac{56}{2x+1} = 1$$

$$\frac{1}{x} - \frac{2}{2x+1} = \frac{1}{28}$$

$$\frac{2x+1-2x}{x(2x+1)} = \frac{1}{28}$$

$$\frac{1}{x(2x+1)} = \frac{1}{28}$$

$$2x^2 + x - 28 = 0$$

$$2x^2 + 8x - 7x - 28 = 0$$

$$2x(x + 4) - 7(x + 4) = 0$$

$$(x + 4)(2x - 7) = 0$$

$$x = -4, \frac{7}{2}$$

Since, time cannot be negative,

$$x = \frac{7}{2} = 3.5 \text{ hours}$$

34. Let speed of stream = x km/hr

Speed of boat in still water = 20 km/hr

Speed of boat upstream = $(20 - x)$ km/hr

Speed of boat downstream = $(20 + x)$ km/hr

According to equation,

$$\frac{48}{20-x} = \frac{48}{20+x} + 1$$

$$\frac{1}{20-x} - \frac{1}{20+x} = \frac{1}{48}$$

$$\frac{20+x-20+x}{(20-x)(20+x)} = \frac{1}{48}$$

$$\frac{2x}{(20-x)(20+x)} = \frac{1}{48}$$

$$96x = 400 - x^2$$

$$x^2 + 96x - 400 = 0$$

$$x^2 + 100x - 4x - 400 = 0$$

$$x(x + 100) - 4(x + 100) = 0$$

$$(x - 4)(x + 100) = 0$$

$$x = 4, -100$$

Being the speed, x can not be negative.

So, $x = -100$ is rejected

$$\therefore x = 4$$

Speed of stream = 4 km/hr

$$35. \quad \frac{1}{2x-3} + \frac{1}{x-5} = 1$$

$$\frac{x-5+2x-3}{(2x-3)(x-5)} = 1$$

$$\frac{3x-8}{2x^2-10x-3x+15} = 1$$

$$2x^2 - 13x + 15 = 3x - 8$$

$$2x^2 - 16x + 23 = 0$$

$$\text{Discriminant (D)} = (-16)^2 - 4(2)(23)$$

$$= 256 - 184$$

$$= 72$$

$$\begin{aligned} x &= \frac{-b \pm \sqrt{D}}{2a} \\ &= \frac{16 \pm \sqrt{72}}{4} \\ &= \frac{16 \pm 6\sqrt{2}}{4} \\ &= \frac{8 \pm 3\sqrt{2}}{2} \end{aligned}$$

36. Let present age of sister be x years

$$\therefore \text{age of girl} = 2x \text{ years}$$

According to question,

$$(x + 4)(2x + 4) = 160$$

$$2x^2 + 12x + 16 - 160 = 0$$

$$2x^2 + 12x - 144 = 0$$

$$x^2 + 6x - 72 = 0$$

$$x^2 + 12x - 6x - 72 = 0$$

$$x(x + 12) - 6(x + 12) = 0$$

$$(x - 6)(x + 12) = 0$$

$$x = 6, -12$$

As age cannot be negative,

$$x = -12 \text{ is rejected}$$

$$\therefore x = 6$$

Age of sister = 6 years

Age of girl = $2x$

$$= 2(6)$$

$$= 12 \text{ years}$$

37. Let number of articles be x

$$\therefore \text{Cost of production of each article} = 2x + 3$$

According to question,

$$x(2x + 3) = 90$$

$$2x^2 + 3x - 90 = 0$$

$$2x^2 - 12x + 15x - 90 = 0$$

$$2x(x - 6) + 15(x - 6) = 0$$

$$(2x + 15)(x - 6) = 0$$

$$x = \frac{-15}{2} \quad \text{or} \quad x = 6$$

Being number of articles, x cannot be negative.

$$\therefore x = 6$$

Number of articles = 6

Cost of production of each article

$$= 2x + 3$$

$$= 12 + 3$$

$$= \$15$$

38. Let Shefali's marks in English be x .

$$\therefore \text{Shefali's marks in Mathematics} = 30 - x$$

According to question,

$$(30 - x + 2)(x - 3) = 210$$

$$\begin{aligned}
 (32 - x)(x - 3) &= 210 \\
 32x - 96 - x^2 + 3x &= 210 \\
 x^2 - 35x + 306 &= 0 \\
 x^2 - 17x - 18x + 306 &= 0 \\
 x(x - 17) - 18(x - 17) &= 0 \\
 (x - 17)(x - 18) &= 0 \\
 x = 17 \text{ or } x &= 18
 \end{aligned}$$

If $x = 17$

Shefali's marks in English = 17

Shefali's marks in Mathematics = $30 - 17 = 13$

If $x = 18$

Shefali's marks in English = 18

Shefali's marks in Mathematics = $30 - 18 = 12$

39. Let speed of train = x km/hr

Distance covered = 360 km

$$\text{So, time taken} = \frac{360}{x}$$

According to question,

$$\begin{aligned}
 \frac{360}{x+5} &= \frac{360}{x} - 1 \\
 \frac{360}{x} - \frac{360}{x+5} &= 1
 \end{aligned}$$

$$\begin{aligned}
 \frac{x+5-x}{x(x+5)} &= \frac{1}{360} \\
 \frac{5}{x(x+5)} &= \frac{1}{360} \\
 x^2 + 5x - 1800 &= 0 \\
 x^2 - 40x + 45x - 1800 &= 0 \\
 x(x-40) + 45(x-40) &= 0 \\
 (x-40)(x+45) &= 0 \\
 x &= 40, -45
 \end{aligned}$$

Being speed of train, $x = -45$ is rejected.

\therefore Speed of train = 40 km/hr

40. Let breadth of rectangular mango grove = x m

$$\therefore \text{Length} = 2x$$

According to question,

$$\begin{aligned}
 2x(x) &= 800 \\
 2x^2 &= 800 \\
 x^2 &= 400 \\
 x &= \pm 20
 \end{aligned}$$

Being a dimension, x cannot be negative.

$$\therefore x = 20$$

So, Breadth = 20 m

$$\text{Length} = 2x = 40 \text{ m}$$

MULTIPLE CHOICE QUESTIONS

1. (b) $a_n = 3n + 7$

$$a_{n+1} = 3(n+1) + 7 = 3n + 10$$

$$\begin{aligned} \text{So, } d &= a_{n+1} - a_n \\ &= 3n + 10 - 3n - 7 \\ &= 3 \end{aligned}$$

2. (c) $a = 1, a_n = 11$

$$S_n = 36$$

$$\begin{aligned} \text{We know that } S_n &= \frac{n}{2} (a + a_n) \\ 36 &= \frac{n}{2} (1 + 11) \\ n &= \frac{36 \times 2}{12} \\ &= 6 \end{aligned}$$

3. (b) $S_n = 2n^2 + 5n$

$$\begin{aligned} a_n &= S_n - (S_{n-1}) \\ &= (2n^2 + 5n) - [2(n-1)^2 + 5(n-1)] \\ &= 2n^2 + 5n - 2n^2 - 2 + 4n - 5n + 5 \\ &= 4n + 3 \end{aligned}$$

4. (d) We can write reverse AP as

185, ..., 13, 9, 5

Such that $a = 185, d = -4$

$$\begin{aligned} \text{So, } a_9 &= 185 + (9-1)(-4) \\ &= 185 - 32 \\ &= 153 \end{aligned}$$

5. (a) 18, a, b, -3 are in AP.

$$\therefore a - 18 = b - a = -3 - b$$

$$a - 18 = b - a$$

$$2a - b = 18 \quad (i)$$

$$b - a = -3 - b$$

$$a - 2b = 3 \quad (ii)$$

Solving (i) and (ii), we get

$$a = 11, b = 4$$

$$\begin{aligned} \text{So, } a + b &= 11 + 4 \\ &= 15 \end{aligned}$$

WORKSHEET 1

Section A

1. $k + 9, 2k - 1$ and $2k + 7$ are in A.P. if

$$(2k - 1) - (k + 9) = (2k + 7) - (2k - 1)$$

$$k - 10 = 8$$

$$k = 18$$

2. $S_n = 3n^2 + 5n$

$$\begin{aligned} S_{20} &= 3(20)^2 + 5(20) \\ &= 3(400) + 100 \\ &= 1200 + 100 \\ &= 1300 \end{aligned}$$

3. Consider AP : 2, 4, 6, 8, ..., n

Here $a = 2, d = 2$

$$\begin{aligned} S_n &= \frac{n}{2} [2a + (n-1)d] \\ &= \frac{n}{2} [4 + (n-1)2] \\ &= \frac{n}{2} [2n + 2] \\ &= n(n+1) \end{aligned}$$

4. A.P.: $-5, -\frac{5}{2}, 0, \frac{5}{2}, \dots$

$$a_n = a + (n-1)d, d = -\frac{5}{2} + 5 = \frac{5}{2}$$

$$\begin{aligned} \therefore a_{25} &= -5 + (25-1) \frac{5}{2} \\ &= -5 + 24 \left(\frac{5}{2} \right) \\ &= -5 + 60 \\ &= 55 \end{aligned}$$

5. $S_p = ap^2 + bp$

$$\begin{aligned} a_p &= S_p - S_{p-1} \\ &= (ap^2 + bp) - [a(p-1)^2 + b(p-1)] \\ &= ap^2 + bp - [ap^2 + a - 2ap + bp - b] \\ &= ap^2 + bp - ap^2 - a + 2ap - bp + b \\ &= 2ap - a + b \end{aligned}$$

$$\begin{aligned} \therefore a_{p+1} &= 2a(p+1) - a + b \\ &= 2ap + 2a - a + b \\ &= 2ap + a + b \end{aligned}$$

So, $d = a_{p+1} - a_p$

$$\begin{aligned} &= 2ap + a + b - 2ap + a - b \\ &= 2a \end{aligned}$$

6. $a_n = n^2 + 1$

$$a_1 = 1 + 1 = 2$$

$$a_2 = 2^2 + 1 = 5$$

7. $a_n = \frac{3n-2}{4n+5}$

$$a_1 = \frac{3-2}{4+5} = \frac{1}{9}, \quad a_2 = \frac{6-2}{8+5} = \frac{4}{13}$$

$$a_3 = \frac{9-2}{17} = \frac{7}{17}$$

So, sequence is $\frac{1}{9}, \frac{4}{13}, \frac{7}{17}, \dots$

8. $a_n = 3n - 2$

$$a_1 = 3 - 2 = 4$$

$$a_2 = 6 - 2 = 4$$

$$a_3 = 9 - 2 = 7 \quad \text{so on}$$

So, sequence is 1, 4, 7, ...

$$a_2 - a_1 = 4 - 1 = 3$$

$$a_3 - a_2 = 7 - 4 = 3$$

As difference between the terms is same, so, the given sequence is in A.P.

$$a_{10} = 30 - 2 = 28$$

9. A.P : 18, 16, 14, ...

$$S_n = 0$$

$$\frac{n}{2} [2a + (n-1)d] = 0$$

$$\frac{n}{2} [36 + (n-1)(-2)] = 0$$

$$n(36 - 2n + 2) = 0$$

$$n(38 - 2n) = 0$$

$$n = \frac{38}{2} = 19$$

10. $a_4 = 0 \Rightarrow a + 3d = 0 \Rightarrow a = -3d$

To prove : $a_{25} = 3a_{11}$

Consider $a_{25} = a + (25-1)d$

$$= a + 24d$$

$$= -3d + 24d$$

$$= 21d$$

$$a_{11} = a + 10d$$

$$= -3d + 10d$$

$$= 7d$$

So, $a_{25} = 3a_{11}$

11. A.P: 6, 13, 20, ..., 216

$$a_n = a + (n-1)d$$

$$216 = 6 + (n-1)7$$

$$210 = 7(n-1)$$

$$30 = n-1$$

$$n = 31$$

So, 216 is 31st term of an A.P.

So, 16th term is the middle term

$$\begin{aligned}
 a_{16} &= 6 + (16 - 1) 7 \\
 &= 6 + 7 (15) \\
 &= 6 + 105 \\
 &= 111
 \end{aligned}$$

12. Consider 9, 12, 15, 18,

$$\begin{aligned}
 a_2 - a_1 &= 12 - 9 = 3 \\
 a_3 - a_2 &= 15 - 12 = 3 \\
 a_4 - a_3 &= 18 - 15 = 3
 \end{aligned}$$

As difference between the terms is same,

So, the terms are in A.P.

$$\begin{aligned}
 a_{16} &= a + 15d \\
 &= 9 + 15 (3) \\
 &= 9 + 45 \\
 &= 54 \\
 a_n &= a + (n - 1) d \\
 &= 9 + (n - 1) 3 \\
 &= 9 + 3n - 3 \\
 &= 3n + 6
 \end{aligned}$$

$$13. S_5 + S_7 = 167$$

$$\begin{aligned}
 \frac{5}{2} [2a + (5 - 1) d] + \frac{7}{2} [2a + (7 - 1) d] &= 167 \\
 \Rightarrow 5a + \frac{5}{2} (4d) + 7a + \frac{7}{2} (6d) &= 167 \\
 \Rightarrow 5a + 10d + 7a + 21d &= 167 \\
 \Rightarrow 12a + 31d &= 167 \quad (i) \\
 S_{10} &= 235 \\
 \frac{10}{2} [2a + (10 - 1) d] &= 235 \\
 2a + 9d &= 47 \quad (ii)
 \end{aligned}$$

Multiplying equation (ii) by 6 and subtracting (ii) from (i), we get

$$\begin{aligned}
 (12a + 54d) - (12a + 31d) \\
 = 282 - 167
 \end{aligned}$$

$$23d = 115$$

$$d = \frac{115}{23} = 5$$

$$\text{From (ii), } 2a + 9(5) = 47$$

$$2a + 45 = 47$$

$$a = 1$$

So, AP is $a, a + d, a + 2d, \dots$

$$\text{i.e. } 1, 6, 11, \dots$$

14. A.P.: 5, 15, 25, ...

Let n^{th} term of an AP be 130 more than its 31^{st} term

$$\text{i.e. } a_n = 130 + a_{31}$$

$$5 + (n - 1) 10 = 130 + 5 + (31 - 1) 10$$

$$5 + 10n - 10 = 135 + 300$$

$$10n = 435 + 5$$

$$10n = 440$$

$$n = 44$$

So, 44^{th} term of an AP is 130 more than its 31^{st} term

15. $a_s + a_9 = 72$

$$a + 4d + a + 8d = 72$$

$$2a + 12d = 72$$

$$a + 6d = 36 \quad (i)$$

$$a_7 + a_{12} = 97$$

$$a + 6d + a + 11d = 97$$

$$2a + 17d = 97 \quad (ii)$$

On multiplying (i) by 2 and subtracting (ii) from (i), we get

$$(2a + 17d) - (2a + 12d) = 97 - 72$$

$$5d = 25$$

$$d = 5$$

From (i), $a = 36 - 6 (5)$

$$= 36 - 30 = 6$$

$$a = 6$$

So, AP is $a, a + d, a + 2d, \dots$

$$\text{i.e. } 6, 11, 16, \dots$$

16. Consider AP : 7, 14, 21, ..., 497

$$a_n = a + (n-1)d$$

$$497 = 7 + (n-1)d$$

$$497 - 7 = 7(n-1)$$

$$70 = \frac{490}{7} = n-1$$

$$n = 71$$

17. $S_7 = 49$

$$\frac{7}{2} [2a + 6d] = 49$$

$$2a + 6d = 14$$

$$a + 3d = 7$$

(i)

$$\text{Also, } S_{17} = 289$$

$$\frac{17}{2} [2a + 16d] = 289$$

$$2a + 16d = 34$$

$$a + 8d = 17$$

(ii)

On subtracting (ii) from (i), we get

$$(a + 3d) - (a + 8d) = 7 - 17$$

$$-5d = -10$$

$$d = 2$$

From (i), $a = 7 - 3d$

$$= 7 - 6$$

$$= 1$$

$$\text{So, } S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2 + (n-1)2]$$

$$= n [1 + (n-1)]$$

$$= n^2$$

18. Let S_n and S'_n be sum of n terms of two A.P.

$$\frac{S_n}{S'_n} = \frac{7n+1}{4n+27}$$

$$\frac{\frac{n}{2} [2a + (n-1)d]}{\frac{n}{2} [2a' + (n-1)d']} = \frac{7n+1}{4n+27}$$

$$\frac{2a + (n-1)d}{2a' + (n-1)d'} = \frac{7n+1}{4n+27}$$

$$\frac{a + \left(\frac{n-1}{2}\right)d}{a' + \left(\frac{n-1}{2}\right)d'} = \frac{7n+1}{4n+27}$$

$$\frac{a + (m-1)d}{a' + (m-1)d'} = \frac{7(2m-1)+1}{4(2m-1)+27}$$

$$\frac{a_m}{a'_m} = \frac{14m-6}{8m+23}$$

19. Let the digits be $a-d, a, a+d$

$$a-d + a + a+d = 15$$

$$3a = 15$$

$$a = 5$$

$$\text{Also, } 100(a-d) + 10a + a+d$$

$$= [100(a+d) + 10a + a-d] - 594$$

$$\therefore 100a - 100d + 11a + d$$

$$= 100a + 100d + 11a - d - 594$$

$$0 = 200d - 2d - 594$$

$$198d = 594$$

$$d = 3$$

$$\text{So, number} = 100(a+d) 10a + a-d$$

$$= 100(8) + 50 + 2$$

$$= 852$$

$$20. \quad ap = q \Rightarrow a + (p-1)d = q \quad (i)$$

$$aq = p \Rightarrow a + (q-1)d = p \quad (ii)$$

On subtracting (ii) from (i), we get

$$(p-1)d - (q-1)d = q - p$$

$$d [p-1 - q + 1] = q - p$$

$$d = \frac{q-p}{p-q} = -1$$

$$\text{From (i), } a + (p-1)(-1) = q$$

$$a = p - 1 + q$$

$$\text{So, } a_n = a + (n-1)d$$

$$\begin{aligned}
 &= (p - l + q) + (n - l)(-l) \\
 &= p - l + q - n + l \\
 &= p + q - n
 \end{aligned}$$

21. Here, $a_2 - a_1 = 19\frac{1}{4} - 20$

$$\begin{aligned}
 &= \frac{77}{4} - 20 \\
 &= \frac{77 - 80}{4} = -\frac{3}{4} \\
 a_3 - a_2 &= 18\frac{1}{2} - 19\frac{1}{4} \\
 &= \frac{37}{2} - \frac{77}{4} \\
 &= \frac{74 - 77}{4} \\
 &= -\frac{3}{4}
 \end{aligned}$$

as $a_3 - a_2 = a_2 - a_1$

i.e. difference between the terms is same, so, the given sequence forms an A.P.

Here, $a = 20, d = \frac{-3}{4}$

$$\begin{aligned}
 a_n &< 0 \\
 a + (n - l)d &< 0 \\
 20 + (n - l)\left(\frac{-3}{4}\right) &< 0 \\
 \frac{-3}{4}(n - l) &< -20 \\
 n - l &> -20\left(\frac{-4}{3}\right) \\
 n - l &> \frac{80}{3} \\
 n &> \frac{80}{3} + l = \frac{83}{3} = 27.67
 \end{aligned}$$

So, $n = 28$

So, a_{28} is the first negative term

22. For $S_1, a = l, d = l$

$$\text{So, } S_1 = \frac{n}{2} [2 + (n - l)(l)]$$

$$\frac{n}{2}(n + l)$$

For $S_2, a = l, d = 2$

$$\begin{aligned}
 \text{So, } S_2 &= \frac{n}{2} [2 + (n - l)(2)] \\
 &= n [l + n - l] \\
 &= n^2
 \end{aligned}$$

For $S_3, a = l, d = 3$

$$\begin{aligned}
 S_3 &= \frac{n}{2} [2 + (n - l)3] \\
 &= \frac{n}{2} [3n - l]
 \end{aligned}$$

Consider $S_1 + S_3 = \frac{n}{2}(n + l) + \frac{n}{2}(3n - l)$

$$\begin{aligned}
 &= \frac{n^2}{2} + \frac{n}{2} + \frac{3n^2}{2} - \frac{n}{2} \\
 &= \frac{4n^2}{2} \\
 &= 2n^2 \\
 &= 2S_2
 \end{aligned}$$

23. A.P.: a, 7, b, 23, c

As the terms are in A.P.,

$$7 - a = b - 7 = 23 - b = c - 23$$

As $7 - a = b - 7$

$$a + b = 14 \quad \text{(i)}$$

As $b - 7 = 23 - b$

$$2b = 30$$

$$b = 15$$

From (i), $a = 14 - b = 14 - 15$

$$a = -1$$

As $23 - b = c - 23$

$$23 - 15 = c - 23$$

$$c = 31$$

24. Let the four parts be

$a - 3d, a - d, a + d, a + 3d$ such that

$$a - 3d + a - d + a + d + a + 3d = 32$$

$$4a = 32$$

$$a = 8$$

Also,
$$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15}$$

i.e.
$$\frac{(8-3d)(8+3d)}{(8-d)(8+d)} = \frac{7}{15}$$

$$\frac{64-9d^2}{64-d^2} = \frac{7}{15}$$

$$960 - 135d^2 = 448 - 7d^2$$

$$512 = 128 d^2$$

$$d^2 = 4$$

$$d = \pm 2$$

For $a = 8$, $d = 2$

the four parts are

$$a - 3d, a - d, a + d, a + 3d$$

i.e. $8 - 6, 8 - 2, 8 + 2, 8 + 6$

i.e. $2, 6, 10, 14$

For $a = 8$, $d = -2$

the four parts are

$$a - 3d, a - d, a + d, a + 3d$$

i.e. $8 + 6, 8 + 2, 8 - 2, 8 - 6$

i.e. $14, 10, 6$ and 2

25. Let the policeman catches the thief in n minutes.

Uniform speed of thief = 100 m/min

As after n minutes a policeman runs after the thief to catch him.

So, distance travelled by thief.

$$= 100(n+1) \text{ minutes}$$

Given that speed of policeman increases by 10 m/min.

speed of policeman forms an AP:

100 m/min, 110 m/min, 120 m/min, ...

So, distance travelled by policeman

$$= S_n$$

$$\begin{aligned} &= \frac{n}{2} [2a + (n-1)d] \\ &= \frac{n}{2} [200 + (n-1)10] \\ &= n[100 + 5n - 5] \\ &= n(95 + 5n) \end{aligned}$$

Distance travelled by thief

$$\begin{aligned} &= \text{Distance travelled by policeman} \\ &100(n+1) = n(95 + 5n) \\ &100n + 100 = 95n + 5n^2 \\ &5n^2 - 5n - 100 = 0 \\ &n^2 - n - 20 = 0 \\ &n^2 - 5n + 4n - 20 = 0 \\ &n(n-5) + 4(n-5) = 0 \\ &(n+4)(n-5) = 0 \\ &n = -4 \text{ or } n = 5 \end{aligned}$$

As n cannot be negative, $n = 5$

26. Consider the sequence formed by all three digit numbers which leaves a remainder 3 , when divided by 4 : $103, 107, 111, 115, \dots, 999$.

The above sequence forms an A.P. with $a = 103$ and common difference $d = 4$

$$\begin{aligned} a_n &= a + (n-1)d \\ 999 &= 103 + (n-1)4 \\ 4(n-1) &= 999 - 103 \\ 4(n-1) &= 896 \\ n-1 &= 224 \\ n &= 225 \end{aligned}$$

The middle term is $\left(\frac{n+1}{2}\right)^{\text{th}}$ term

$$\begin{aligned} \text{i.e. } &\left(\frac{225+1}{2}\right)^{\text{th}} \text{ term} \\ a_{113} &= 103 + (113-1)4 \\ &= 103 + 112(4) \\ &= 103 + 448 \\ &= 551 \end{aligned}$$

Sum of all terms before middle term

$$\begin{aligned}
 &= S_{112} \\
 &= \frac{112}{2} [2(103) + (112-1)4] \\
 &= 56 [206 + 144] \\
 &= 56 (650) \\
 &= 36,400
 \end{aligned}$$

$$\begin{aligned}
 S_{225} &= \frac{225}{2} [2(103) + (225-1)4] \\
 &= \frac{225}{2} [206 + 896] \\
 &= \frac{225}{2} (1102) \\
 &= 123975
 \end{aligned}$$

So, sum of terms after the middle term

$$\begin{aligned}
 &= 123975 - (S_{112} + 551) \\
 &= 123975 - 36400 - 551 \\
 &= 87024
 \end{aligned}$$

27. Given: $S_m = S_n$

To prove: $S_{m+n} = 0$

$$S_m = \frac{m}{2} [2a + (m-1)d]$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

As $S_m = S_n$

$$\begin{aligned}
 \therefore \frac{m}{2} [2a + (m-1)d] &= \frac{n}{2} [2a + (n-1)d] \\
 m [2a + (m-1)d] &= n [2a + (n-1)d] \\
 2am + md(m-1) &= 2na + nd(n-1)
 \end{aligned}$$

$$2am + m^2d - md = 2an + n^2d - nd$$

$$2am - 2an + m^2d - n^2d - md + nd = 0$$

$$2a(m-n) + d(m^2 - n^2) - d(m-n) = 0$$

$$(m-n)[2a + (m+n)d - d] = 0$$

$$(m-n)[2a + (m+n-1)d] = 0$$

As $m \neq n, 2a + (m+n-1)d = 0$

Consider

$$S_{m+n} = \frac{m+n}{2} [2a + (m+n-1)d]$$

$$\begin{aligned}
 &= \left(\frac{m+n}{2} \right) (0) \\
 &= 0
 \end{aligned}$$

So, sum of its $(m+n)$ terms is zero.

28. AP = $-12, -6, \dots, 21$

If 1 is added to each term,

A.P. becomes $-12+1, -9+1, -6+1, \dots, 21+1$

i.e. $-11, -8, -5, \dots, 22$

We know that

$$\begin{aligned}
 a_n &= a + (n-1)d \\
 22 &= -11 + (n-1)(3)
 \end{aligned}$$

$$\frac{33}{3} = n-1$$

$$n = 12$$

$$\begin{aligned}
 S_{12} &= \frac{12}{2} [2(-11) + (12-1)3] \\
 &= 6 [-22 + 33] \\
 &= 6 (11) \\
 &= 66
 \end{aligned}$$

29. Let the prizes be $a, a-20, a-40, \dots$

$$S_{10} = 1600$$

$$\frac{10}{2} [2a + (10-1)(-20)] = 1600$$

$$5(2a - 180) = 1600$$

$$2a - 180 = 320$$

$$2a = 500$$

$$a = 250$$

So, the prize are 250, 230, 210, 190, 170, 150, 130, 110, 90.

30. First term = a

Second term = b

last term (a_n) = c

$$\text{To prove: } S_n = \frac{(a+c)(b+c-2a)}{2(b-a)}$$

Solution: $d = b - a$

$$\begin{aligned}
 S_n &= \frac{n}{2} [2a + (n-1)d] \\
 \text{or} \\
 &= \frac{n}{2} [a + a_n] \\
 &= \frac{n}{2} [a + c] \quad (i)
 \end{aligned}$$

We know that $a_n = c$

$$\text{i.e. } a + (n-1)(b-a) = c$$

$$\begin{aligned}
 (n-1) &= \frac{c-a}{b-a} \\
 n &= \frac{c-a}{b-a} + 1 \\
 &= \frac{c+b-2a}{b-a} \quad (ii)
 \end{aligned}$$

On putting (ii) in (i), we get

$$\begin{aligned}
 S_n &= \frac{1}{2}(a+c) \left(\frac{c+b-2a}{b-a} \right) \\
 &= \frac{(a+c)(b+c-2a)}{2(b-a)}
 \end{aligned}$$

31. Given that Raghav buys a shop for 120000.

He pays half of the amount in cash

$$\begin{aligned}
 &= \frac{1}{2} \times 120000 \\
 &= 60000.
 \end{aligned}$$

$$\begin{aligned}
 \text{Balance amount to be paid} &= 120000 - 60000 \\
 &= 60000.
 \end{aligned}$$

Given that amount of each installment = 5000.

He agrees to pay the balance in 12 annual installments with interest of 12%.

1. Amount of the first installment

$$\begin{aligned}
 &= 5000 + \frac{12}{100} \times 60000 \\
 &= 5000 + 600 \times 12 \\
 &= 5000 + 7200 \\
 &= 12200.
 \end{aligned}$$

2. Amount of the second installment

$$= 5000 + \frac{12}{100} \times (60000 - 5000)$$

$$\begin{aligned}
 &= 5000 + \frac{12}{100} \times 55000 \\
 &= 5000 + 550 \times 12 \\
 &= 5000 + 6600 \\
 &= 11600.
 \end{aligned}$$

So, the amount paid for installment is 12200, 11600.....It forms an AP.

The 1st term $a = 12200$

$$\begin{aligned}
 \text{Common Difference } d &= 11600 - 12200 \\
 &= -600.
 \end{aligned}$$

The number of terms $n = 12$.

We know that sum of n terms

$$= \frac{n}{2} (2a + (n-1) \times d)$$

Therefore the total cost of the shop

$$\begin{aligned}
 &= 60000 + \frac{12}{2} (2(12200) + (12-1) \times (-600)) \\
 &= 60000 + 6 (24400 - 6600) \\
 &= 60000 + 6 \times 17800 \\
 &= 60000 + 106800 \\
 &= 166800.
 \end{aligned}$$

The total cost of the shop = 166800.

32. 4th term = $a + 3d$

$$8^{\text{th}} \text{ term} = a + 7d$$

Sum of the 4th term and 8th term

$$\begin{aligned}
 &a + 3d + a + 7d = 24. \\
 &\Rightarrow 2a + 10d = 24
 \end{aligned}$$

Take 2 common from the equation.....

$$a + 5d = 12 \dots \dots \dots (1)$$

Sum of 6th term and 10th term = 44

$$\Rightarrow a + 5d + a + 9d = 44$$

$$2a + 14d = 44$$

Take 2 common from equation....

$$a + 7d = 22 \dots \dots \dots (2)$$

By Elimination Method:-

$$a + 5d = 12$$

$$a + 7d = 22$$

$$2d = 10$$

$$d = 5$$

Substitute $d = 5$ in eq (1)

$$a + 5d = 12$$

$$a + 5(5) = 12$$

$$a = 12 - 25$$

$$a = -13$$

• The 1st term 3 term are $-13, -13 + 5, -13 + 10$

• $-13, -8, -3$.

WORKSHEET 2

Section A

I. Consider an AP: 12, 18, 24, ..., 96

$$a_n = a + (n - 1)d$$

$$96 = 12 + (n - 1)6$$

$$96 - 12 = 6(n - 1)$$

$$n - 1 = \frac{84}{6}$$

$$n - 1 = 14$$

$$n = 15$$

2. $S_q = 2q + 3q^2$

$$S_{q-1} = 2(q - 1) + 3(q - 1)^2$$

$$= 2q - 2 + 3q^2 + 3 - 6q$$

$$= 3q^2 - 4q + 1$$

$$a_q = S_q - S_{q-1}$$

$$= 2q + 3q^2 - 3q^2 + 4q - 1$$

$$= 6q - 1$$

$$a_{q+1} = 6q + 6 - 1 = 6q + 5$$

$$\therefore d = a_{q+1} - a_q = 6q + 5 - 6q + 1$$

$$= 6$$

3. Consider AP: 1, 3, 5, 7, ..., n

with $a = 1, d = 2$

$$\begin{aligned} S_n &= \frac{n}{2} [2a + (n - 1)d] \\ &= \frac{n}{2} [2 + (n - 1)2] \\ &= n [1 + n - 1] \\ &= n^2 \end{aligned}$$

4. As terms are in AP,

$$13 - (2p + 1) = (5p - 3) - 13$$

$$13 - 2p - 1 = 5p - 3 - 13$$

$$12 + 16 = 7p$$

$$7p = 28$$

$$p = 4$$

5. First term = a

Second term = b

Last term (a_n) = 2a

Common difference (d) = b - a

$$S_n = \frac{n}{2} [2a + (n - 1)d] \text{ or } \frac{n}{2} [a + a_n]$$

$$\begin{aligned} S_n &= \frac{n}{2} [a + 2a] \\ &= \frac{3a}{2} n \end{aligned} \quad (i)$$

As $a_n = 2a$

$$a + (n - 1)d = 2a$$

$$a + (n - 1)(b - a) = 2a$$

$$(n - 1)(b - a) = a$$

$$n - 1 = \frac{a}{b - a}$$

$$n = \frac{a}{b - a} + 1$$

$$n = \frac{b}{b - a} \quad (ii)$$

On putting (ii) in (i), we get

$$\begin{aligned} S_n &= \frac{3a}{2} \frac{b}{(b - a)} \\ &= \frac{3ab}{2(b - a)} \end{aligned}$$

6. $\frac{1}{m}, \frac{1+m}{m}, \frac{1+2m}{m}, \dots$

Here, $a = \frac{1}{m}$

$$d = \frac{1+m}{m} - \frac{1}{m} = \frac{1}{m} + 1 - \frac{1}{m} = 1$$

$$a_n = a + (n-1)d$$

$$= \frac{1}{m} + (n-1)1$$

$$= \frac{1}{m} + n - 1$$

7. Let 184 be the n^{th} term of

$$\text{AP} = 3, 7, 11, \dots \text{with}$$

$$a = 3$$

$$d = 7 - 3 = 4$$

$$a_n = a + (n-1)d$$

$$184 = 3 + (n-1)4$$

$$184 - 3 = 4(n-1)$$

$$n-1 = \frac{181}{4}$$

$$n = \frac{185}{4} \text{ which is not a natural number.}$$

So, 184 is not a term of AP: 3, 7, 11, ...

8. Consider AP: 254, ..., 14, 9, 4

with $a = 254$

$$d = 9 - 14 = -5$$

So, $a_{10} = 254 + (10-1)(-5)$

$$= 254 - 45$$

$$= 209$$

9. $a_1 = 4$

$$a_n = 4a_{n-1} + 3, n > 1$$

$$a_2 = 4a_1 + 3 = 16 + 3 = 19$$

$$a_3 = 4a_2 + 3 = 4(19) + 3 = 79$$

$$a_4 = 4a_3 + 3 = 4(79) + 3 = 319$$

$$a_5 = 4a_4 + 3 = 4(319) + 3 = 1279$$

$$a_6 = 4a_5 + 3 = 4(1279) + 3$$

$$= 5119.$$

10.

$$a_n = 4n + 5$$

$$a_1 = 4 + 5 = 9$$

$$a_2 = 4(2) + 5 = 13$$

$$a_3 = 4(3) + 5 = 17$$

$$a_4 = 4(4) + 5 = 21$$

$$a_2 - a_1 = 13 - 9 = 4$$

$$a_3 - a_2 = 17 - 13 = 4$$

$$a_4 - a_3 = 21 - 17 = 4$$

As difference between the terms is same, the sequence defined by $a_n = 4n + 5$ is an A.P. such that $d = 4$.

11. A.P : 27, 24, 21, ...

Let sum of n terms of the A.P. be 0.

Here, first term (a) = 27

$$\text{Common difference (d)} = 24 - 27$$

$$= -3$$

$$S_n = 0$$

$$\frac{n}{2} [2a + (n-1)d] = 0$$

$$\frac{n}{2} [54 + (n-1)(-3)] = 0$$

$$n(54 - 3n + 3) = 0$$

$$n(18 - n + 1) = 0$$

$$18 - n + 1 = 0$$

$$n = 19$$

So, sum of 19 terms is 0.

12. $\frac{S_m}{S_n} = \frac{m^2}{n^2}$

To prove : $\frac{a_m}{a_n} = \frac{2m-1}{2n-1}$

As $\frac{S_m}{S_n} = \frac{m^2}{n^2}$

$$\therefore \frac{\frac{m}{2} [2a + (m-1)d]}{\frac{n}{2} [2a + (n-1)d]} = \frac{m^2}{n^2}$$

$$\frac{2a + (m-1)d}{2a + (n-1)d} = \frac{m}{n}$$

$$\frac{a + \frac{(m-1)d}{2}}{a + \frac{(n-1)d}{2}} = \frac{m}{n}$$

On replacing m by $2m - 1$ and n by $2n - 1$ on both sides of equation, we get

$$\frac{a + (m-1)d}{a + (n-1)d} = \frac{2m-1}{2n-1}$$

$$13. S_n = \frac{3n^2}{2} + \frac{5n}{2}$$

We know that $a_n = S_n - S_{n-1}$

$$\text{So, } a_{25} = S_{25} - S_{24}$$

$$\begin{aligned} &= \left[\frac{3}{2}(625 + \frac{5}{2}(25)) \right] - \left[\frac{3}{2}(576) + \frac{5}{2}(24) \right] \\ &= \frac{1875}{2} + \frac{125}{2} - \frac{1728}{2} - \frac{120}{2} \\ &= \frac{1875 + 125 - 1728 - 120}{2} \\ &= 76 \end{aligned}$$

14. We know

$$M = \frac{(n+1)}{2} \text{ th observation for } n = \text{odd}$$

Therefore the 6th term of this AP is 30

Therefore $A_6 = 30$

$$a + 5d = 30$$

Therefore we need to find S_{11}

$$\text{Therefore } S_{11} = \frac{n}{2} (2a + (n-1)d)$$

$$= \frac{11}{2} (2a + 10d)$$

$$= \frac{11}{2} (2(a + 5d))$$

Replacing value

$$= \frac{11}{2} (2(30))$$

$$= 11 \times 30$$

$$= 330$$

$$15. A = -7$$

$$d = 5$$

$$T_{18} = a + 17d$$

$$= -7 + 17 \times 5$$

$$= -7 + 85$$

$$= 78$$

$$\text{General term} = a + (n-1)d$$

$$= -7 + (n-1)5$$

$$= -7 + 5n - 5$$

$$= 5n - 12$$

$$16. a_{10} = 52$$

$$\therefore a + 9d = 52 \quad (i)$$

$$a_{17} = 20 + a_{13}$$

$$a + 16d = 20 + a + 12d$$

$$4d = 20$$

$$d = 5$$

$$\text{From (i), } a + 9(5) = 52$$

$$a + 45 = 52$$

$$a = 7$$

So, AP is $a, a + d, a + 2d, \dots$

i.e. $7, 12, 17, \dots$

$$17. a_9 = -32$$

$$a + 8d = -32 \quad (i)$$

$$\text{Also, } a_{11} + a_{13} = -94$$

$$a + 10d + a + 12d = -94$$

$$2a + 22d = -94$$

$$a + 11d = -47 \quad (ii)$$

On subtracting (i) from (ii), we get

$$a + 11d - a - 8d = -47 + 32$$

$$3d = -15$$

$$d = -5$$

$$\text{From (i), } a = -32 - 8d$$

$$\begin{aligned}
 &= -32 - 8 (-5) \\
 &= -32 + 40 \\
 &= 8
 \end{aligned}$$

18. $S_n = \frac{n}{2} [2a + (n-1)d]$

$$S_{30} = \frac{30}{2} [2a + 29d] \Rightarrow S_{30} = 30a + 435d \text{ .(i)}$$

$$S_{20} = \frac{20}{2} [2a + 19d] \Rightarrow S_{20} = 20a + 190d$$

$$S_{10} = \frac{10}{2} [2a + 9d] \Rightarrow S_{10} = 10a + 45d$$

$$\begin{aligned}
 3(S_{20} - S_{10}) &= 3[20a + 190d - 10a - 45d] \\
 &= 3[10a + 145d] \\
 &= 30a + 435d = S_{30} \quad [\text{From (i)}]
 \end{aligned}$$

Hence, $S_{30} = 3(S_{20} - S_{10})$ Hence proved.

19. $a_{14} = 2a_8$

$$a + 13d = 2[a + 7d]$$

$$a + 13d = 2a + 14d$$

$$-d = a$$

$$a_6 = -8$$

$$a + 5d = -8$$

$$-d + 5d = -8 \quad (\text{As } a = -d)$$

$$4d = -8$$

$$d = -2$$

So, $a = -d = 2$

We know that $S_n = \frac{n}{2} [2a + (n-1)d]$

$$\begin{aligned}
 \therefore S_{20} &= \frac{20}{2} [2(2) + (20-1)(-2)] \\
 &= 10[4 - 38] \\
 &= 10(-34) \\
 &= -340
 \end{aligned}$$

20. First term (a) = 7

Last term (a_n) = 49

$$S_n = 420$$

We know that $S_n = \frac{n}{2} [a + a_n]$

$$420 = \frac{n}{2} [7 + 49]$$

$$n = \frac{420}{28} = 15$$

Now, $a_n = 49$

$$a + (n-1)d = 49$$

$$7 + (15-1)d = 49$$

$$14d = 42$$

$$d = 3.$$

21. $a_2 + a_7 = 30$

$$a + d + a + 6d = 30$$

$$2a + 7d = 30 \quad (\text{i})$$

Also, $a_{15} = 2a_8 - 1$

$$a + 14d = 2[a + 7d] - 1$$

$$a + 14d = 2a + 14d - 1$$

$$0 = a - 1$$

$$a = 1$$

From (i), $2(1) + 7d = 30$

$$7d = 28$$

$$d = 4$$

So, A.P. is a, a + d, a + 2d, ...

i.e. 1, 5, 9,

22. AP : $18, 15\frac{1}{2}, 13, \dots, -49\frac{1}{2}$

i.e. $18, \frac{31}{2}, 13, \dots, -\frac{99}{2}$

Here, first term (a) = 18

Common difference (d) = $\frac{31}{2} - 18$

$$= \frac{31-36}{2} = -\frac{5}{2}$$

Last term (a_n) = $-\frac{99}{2}$

$$a + (n-1)d = -\frac{99}{2}$$

$$\begin{aligned}
 18 + (n-1) \left(-\frac{5}{2} \right) &= -\frac{99}{2} \\
 -\frac{5}{2}(n-1) &= -\frac{99}{2} - 18 \\
 -\frac{5}{2}(n-1) &= \frac{-99-36}{2} \\
 -\frac{5}{2}(n-1) &= -\frac{135}{2} \\
 n-1 &= -\frac{135}{2} \times \frac{2}{-5} = 27 \\
 n &= 28
 \end{aligned}$$

So, number of terms (n) = 28

$$\text{We know that } S_n = \frac{n}{2}[2a + (n-1)d]$$

$$\begin{aligned}
 S_{28} &= \frac{28}{2} \left[36 + (28-1) \left(\frac{-5}{2} \right) \right] \\
 &= 14 \left[36 - \frac{135}{2} \right] \\
 &= \left(\frac{72-135}{2} \right) \\
 &= 7(-63) \\
 &= -441
 \end{aligned}$$

$$23. \quad a_n = -4n + 15$$

$$a_1 = -4 + 15 = 11$$

$$a_2 = -4(2) + 15 = -8 + 15 = 7$$

$$a_3 = -12 + 15 = 3.$$

So, First term (a) = 11

$$\text{Common difference (d)} = 7 - 11 = -4$$

We know that

$$\begin{aligned}
 S_n &= \frac{n}{2}[2a + (n-1)d] \\
 S_{20} &= \frac{20}{2}[2(11) + (20-1)(-4)] \\
 &= 10[22 - 76] \\
 &= 10(-54) \\
 &= -540
 \end{aligned}$$

$$\begin{aligned}
 a_8 &= 31 \\
 a + 7d &= 31
 \end{aligned}
 \tag{i}$$

$$\begin{aligned}
 a_{15} &= a_{11} + 16 \\
 a + 14d &= a + 10d + 16
 \end{aligned}$$

$$\begin{aligned}
 4d &= 16 \\
 d &= 4
 \end{aligned}
 \tag{ii}$$

$$\text{From (i), } a + 28 = 31$$

$$a = 3$$

So, A.P. is a, a + d, a + 2d, ...

i.e. 3, 7, 11, ...

$$\begin{aligned}
 25. \quad a_{15} &= 3 + 2a_7 \\
 a + 14d &= 3 + 2(a + 6d) \\
 a + 14d &= 3 + 2a + 12d \\
 0 &= a - 2d + 3
 \end{aligned}
 \tag{i}$$

$$\begin{aligned}
 \text{Also, } a_{10} &= 41 \\
 a + 9d &= 41
 \end{aligned}
 \tag{ii}$$

On subtracting (i) from (ii), we get

$$a + 9d - a + 2d = 41 + 3$$

$$11d = 44$$

$$d = 4$$

$$\text{From (ii), } a + 9(4) = 41$$

$$a = 41 - 36$$

$$= 5$$

$$\begin{aligned}
 \text{We know that } a_n &= a + (n-1)d \\
 &= 5 + (n-1)4 \\
 &= 4n + 1
 \end{aligned}$$

$$26. \quad \text{Consider an AP} = 504, 511, 518, \dots, 896$$

$$\text{Here, first term (a)} = 504$$

$$\text{Common difference (d)} = 511 - 504 = 7$$

$$\text{Last term (a}_n\text{)} = 896$$

$$\begin{aligned}
 \text{As } a_n &= 896 \\
 a + (n-1)d &= 896
 \end{aligned}$$

$$504 + (n - 1) 7 = 896$$

$$7(n - 1) = 392$$

$$n - 1 = 56$$

$$n = 57$$

$$\text{We know that } S_n = \frac{n}{2} [2a + (n - 1)d]$$

$$\therefore S_{57} = \frac{57}{2} [2(504 + (57 - 1)7)] \\ = \frac{57}{2} [1008 + 392] \\ = 39900$$

$$27. \quad \text{First term (a)} = 5$$

Let d be the common difference

$$S_4 = \frac{1}{2} [S_8 - S_4]$$

$$\text{i.e. } \frac{4}{2} [2a + (4 - 1)d]$$

$$= \frac{1}{2} \left\{ \frac{8}{2} [2a + (8 - 1)d] - \frac{4}{2} [2a + (4 - 1)d] \right\}$$

$$\text{i.e. } 2(2a + 3d) = 2(2a + 7d) - (2a + 3d)$$

$$4a + 6d = 4a + 14d - 2a - 3d$$

$$4a + 6d = 2a + 11d$$

$$2a = 5d$$

$$d = \frac{2a}{5} = \frac{2}{5} (5) = 2$$

So, common difference (d) = 2

$$28. \quad \text{A.P: } 3, 9, 15, \dots, 99$$

$$\text{Here, first term (a)} = 3$$

$$\text{Common difference (d)} = 9 - 3$$

$$= 6$$

$$\text{Last term (a}_n\text{)} = 99$$

$$a + (n - 1)d = 99$$

$$3 + (n - 1)6 = 99$$

$$6(n - 1) = 96$$

$$n - 1 = 16$$

$$n = 17$$

$$\text{We know that } S_n = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{17} = \frac{17}{2} [6 + (17 - 1)6] \\ = \frac{17}{2} [6 + 96] \\ = 867$$

29.

$$\text{First term (a)} = 8$$

$$\text{Last term (a}_n\text{)} = 350$$

$$\text{Common difference (d)} = 9$$

$$\text{As } a_n = 350$$

$$a + (n - 1)d = 350$$

$$8 + (n - 1)9 = 350$$

$$9(n - 1) = 342$$

$$n - 1 = \frac{342}{9} = \frac{114}{3} = 38$$

$$n - 1 = 38$$

$$n = 39$$

We know that

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{39} = \frac{39}{2} [16 + (39 - 1)9]$$

$$= \frac{39}{2} [16 + 342]$$

$$= 6981$$

30. Let the first term of an AP be 'a' and common difference be 'd'.

$$S_{10} = -150$$

$$\frac{11}{2} [2a + (10 - 1)d] = -150$$

$$5(2a + 9d) = -150$$

$$2a + 9d = -30 \quad (\text{i})$$

Also,

$$S_{20} - S_{10} = -550$$

$$\frac{20}{2} (2a + 19d) - \frac{10}{2} (2a + 9d) = -550$$

$$10(2a + 19d) - 5(2a + 9d) = -550$$

$$\begin{aligned}
 2(2a + 19d) - (2a + 9d) &= -110 \\
 4a + 38d - 2a - 9d &= -110 \\
 2a + 29d &= -110 \quad (\text{ii})
 \end{aligned}$$

On subtracting (ii) from (i), we get

$$\begin{aligned}
 2a + 9d - 2a - 29d &= -30 + 110 \\
 -20d &= 80 \\
 d &= -4
 \end{aligned}$$

From (i), $2a + 9(-4) = -30$

$$\begin{aligned}
 2a &= -30 + 36 \\
 2a &= 6 \\
 a &= 3
 \end{aligned}$$

So, A.P. is $a, a + d, a + 2d, \dots$

i.e. $3, 3 - 4, 3 - 8, \dots$

i.e. $3, -1, -5, \dots$

Section D

31. Let A, D be first term and common difference respectively.

$$S_p = a \Rightarrow \frac{p}{2} [2A + (p-1)D] = a$$

$$S_q = b \Rightarrow \frac{q}{2} [2A + (q-1)D] = b$$

$$S_r = c \Rightarrow \frac{r}{2} [2A + (r-1)D] = c$$

Consider

$$\begin{aligned}
 &\frac{a}{p} (q-r) + \frac{b}{q} (r-p) + \frac{c}{r} (p-q) \\
 &= \frac{1}{p} \frac{p}{2} [2A + (p-1)D] (q-r) + \frac{1}{q} \frac{q}{2} [2A + \\
 &\quad (q-1)D] (r-p) + \frac{1}{r} \frac{r}{2} [2A + (r-1)D] (p-q) \\
 &= \frac{1}{2} [2A + (p-1)D] (q-r) + \frac{1}{2} [2A + (q-1)D] \\
 &\quad (r-p) + \frac{1}{2} [2A + (r-1)D] (p-q) \\
 &= [A(q-r) + A(r-p) + A(p-q)] + \frac{D}{2} [(p-1) \\
 &\quad (q-r) + (q-1)(r-p) + (r-1)(p-q)]
 \end{aligned}$$

$$\begin{aligned}
 &= A(q-r+r-p+p-q) + \frac{D}{2} [(p-1)(q-r) \\
 &\quad + (q-1)(r-p) + (r-1)(p-q)] \\
 &= 0 + \frac{D}{2} [pq - pr - q + r + qr - qp - r + p + \\
 &\quad rp - rq - p + q] \\
 &= 0 + 0 \\
 &= 0
 \end{aligned}$$

32. Let a and d be the first term and common term of an A.P.

$$a_m = \frac{l}{n}$$

$$a + (m-1)d = \frac{l}{n} \quad (\text{i})$$

$$\begin{aligned}
 \text{Also, } a_n &= \frac{l}{m} \\
 a + (n-1)d &= \frac{l}{m} \quad (\text{ii})
 \end{aligned}$$

On subtracting (i) from (ii), we get

$$a + (n-1)d - a - (m-1)d = \frac{l}{m} - \frac{l}{n}$$

$$d(n-1-m+1) = \frac{n-m}{mn}$$

$$d(n-m) = \frac{n-m}{mn}$$

$$d = \frac{l}{mn}$$

$$\text{From (i), } a + (m-1) \frac{l}{mn} = \frac{l}{n}$$

$$a + (m-1) \frac{l}{mn} = \frac{l}{n}$$

$$a + \frac{l}{n} - \frac{l}{mn} = \frac{l}{n}$$

$$a = \frac{l}{mn}$$

Consider

$$S_{mn} = \frac{mn}{2} \left[\frac{2}{mn} + (mn-1) \frac{l}{mn} \right]$$

$$= \frac{mn}{2} \left[\frac{2}{mn} + l - \frac{1}{mn} \right]$$

$$= \frac{mn}{2} \left[\frac{1}{mn} + l \right]$$

$$= \frac{mn}{2} \left[\frac{mn+l}{mn} \right]$$

$$= \frac{1}{2} (mn + l)$$

33. Length of each step = 50 m

$$\text{Width of each step} = \frac{l}{2} \text{ m}$$

$$\text{Height of first step} = \frac{l}{4} \text{ m}$$

$$\text{Height of second step} = \frac{l}{4} + \frac{l}{4} = \frac{l}{2} \text{ m}$$

$$\text{Height of third step} = \frac{3}{4} l \text{ m so on.}$$

Volume of concrete required to build the first step (V_1) = $50 \times \frac{1}{2} \times \frac{1}{4} l^3$

Volume of concrete required to build the second step (V_2) = $50 \times \frac{1}{2} \times \left(2 \times \frac{l}{4}\right)$

$$(V_3) = 50 \times \frac{1}{2} \times \frac{3}{4} l^3 \text{ and so on.}$$

Total volume of concrete

$$= V_1 + V_2 + V_3 + \dots + V_{15}$$

$$= \left(50 \times \frac{1}{2} \times \frac{1}{4}\right) + \left[50 \times \frac{1}{2} \times \left(2 \times \frac{l}{4}\right)\right]$$

$$+ \left(50 \times \frac{1}{2} \times 3 \times \frac{l}{4}\right) + \dots + \left[50 \times \frac{1}{2} \times \left(15 \times \frac{l}{4}\right)\right]$$

$$= \left(50 \times \frac{1}{2}\right) \left[\frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \dots + \frac{15}{4} \right]$$

$$= 25 \left[\frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \dots + \frac{15}{4} \right] l^3$$

$$= \frac{25}{4} (1 + 2 + \dots + 15) l^3$$

$$= \frac{25}{4} \times \frac{15}{2} (l + 15) = 750 l^3$$

34. Let the first term and common difference of an A.P. be a and d respectively.

Let S and S' be the sum of odd terms and even terms of A.P.

$$S = a_1 + a_3 + a_5 + \dots + a_{2n+1}$$

$$= \frac{n+1}{2} (a_1 + a_{2n+1})$$

$$= \frac{n+1}{2} [a + a + (2n+1-1)d]$$

$$= (n+1)(a+nd)$$

$$S' = a_2 + a_4 + a_6 + \dots + a_{2n}$$

$$S' = \frac{n}{2} [2a + 2nd]$$

$$= n(a+nd)$$

$$\text{Consider } \frac{S}{S'} = \frac{(n+1)(a+nd)}{n(a+nd)}$$

$$= \frac{n+1}{n}$$

35. Consider 1, 2, 3, ..., 999, 1000

This sequence forms an AP with first term

(a) = 1 and common difference (d) = 1

We know that

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{1000} = \frac{1000}{2} [2 + (1000-1)1]$$

$$= 500(2 + 999)$$

$$= 500(1001)$$

$$= 500500$$

Now consider list of numbers divisible by 2:

2, 4, 6, 8, ..., 1000

This sequence also forms an AP with $a = 2$,

$$d = 2, n = \frac{1000}{2} = 500$$

$$S_{500} = \frac{500}{2} [2(2) + (500-1)2]$$

$$= 250(4 + 499(2))$$

$$= 250500$$

Again, consider list of numbers divisible by 5:
5, 10, 15, ..., 1000

$$\text{Here, } a = 5, d = 5, n = \frac{1000}{5} = 200$$

$$\begin{aligned} S_{200} &= \frac{200}{2} [10 + (200 - 1) 5] \\ &= 100 [10 + 5 (199)] \\ &= 100500 \end{aligned}$$

Now, we will consider list of numbers divisible by both 2 and 5 i.e. $2 \times 5 = 10$

10, 20, 30, ..., 1000

This list of numbers form an AP with

$$a = 10, d = 10, n = \frac{1000}{10} = 100$$

$$\begin{aligned} S_{100} &= \frac{100}{2} [20 + (100 - 1) 10] \\ &= 50 (20 + 990) \\ &= 50500 \end{aligned}$$

Therefore, sum of numbers which are either divisible by 2 or 5

$$\begin{aligned} &= S_{200} + S_{500} - S_{100} \\ &= 100500 + 250500 - 50500 \\ &= 300500 \end{aligned}$$

So, sum of numbers from 1 to 1000 that are neither divisible by 2 nor by 5

$$\begin{aligned} \text{2 nor by 5} &= S_{1000} - 300500 \\ &= 500500 - 300500 \\ &= 200000 \end{aligned}$$

36. Suppose the work is completed in n days
Consider an AP: 150, 146, 142, ...

Here, First term (a) = 150

Common difference (d) = -4

Total number of workers who worked all the n days. = S_n

$$\begin{aligned} &= \frac{n}{2} [2 (150) + (n - 1) (-4)] \\ &= \frac{n}{2} (300 - 4n + 4) \end{aligned}$$

$$\begin{aligned} &= \frac{n}{2} [304 - 4n] \\ &= n (152 - 2n) \end{aligned}$$

If the workers did not drop,

work would have been finished in $(n - 8)$ days such that 150 workers work on each day.

∴ Total number of workers who worked all the n days = 150 $(n - 8)$

$$\therefore n(152 - 2n) = 150(n - 8)$$

$$152n - 2n^2 = 150n - 1200$$

$$152n - 150n = 2n^2 - 1200$$

$$2n^2 - 2n - 1200 = 0$$

$$n^2 - n - 600 = 0$$

$$n^2 - 25n + 24n - 600 = 0$$

$$n(n - 25) + 24(n - 25) = 0$$

$$(n + 24)(n - 25) = 0$$

$$n = -24, n = 25$$

Being the number of days, n cannot be negative, so, $n = 25$

∴ Work would be completed in 25 days

37. Consider the sequence: 200, 250, 300, ...

This sequence form an AP with first term (a) = 200 and common difference (d) = 50

We know that

$$\begin{aligned} S_n &= \frac{n}{2} [2a + (n - 1) d] \\ S_{30} &= \frac{30}{2} [2 (200) + (30 - 1) 50] \\ &= 15 [400 + 1450] \\ &= 27,750 \end{aligned}$$

∴ The contractor has to pay \$ 27,750 as penalty, if he has delayed the work by 30 days.

38. Consider AP: 20, 19, 18,

Here, First term (a) = 20

Common difference (d) = -1

Let 200 logs be placed in n rows

$$\therefore S_n = 200$$

$$\frac{n}{2} [2(20) + (17 - 1)(-1)] = 200$$

$$\frac{n}{2} [40 - n + 1] = 200$$

$$n(41 - n) = 400$$

$$-n^2 + 41n - 400 = 0$$

$$n^2 - 41n + 400 = 0$$

$$n^2 - 16n - 25n + 400 = 0$$

$$n(n - 16) - 25(n - 16) = 0$$

$$(n - 16)(n - 25) = 0$$

$$n = 16 \text{ or } 25$$

If $n = 25$,

$$a_{25} = 20 + (25 - 1)(-1)$$

$$= 20 - 24$$

= -4 not possible

So, $n = 16$

So, 200 logs are placed in 16 rows.

$$a_{16} = 20 + (16 - 1)(-1)$$

$$= 20 - 15 = 5$$

So, there are 5 logs in the top row.

39. Given : a^2, b^2, c^2 are in A.P.

To prove : $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

$\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in AP

$$\text{if } \frac{1}{c+a} - \frac{1}{b+c} = \frac{1}{a+b} - \frac{1}{c+a}$$

$$\text{i.e. } \frac{(b+c) - (c+a)}{(b+c)(a+c)} = \frac{(a+c) - (a+b)}{(a+b)(a+c)}$$

$$\text{i.e. } \frac{b+c-c-a}{(b+c)(a+c)} = \frac{a+c-a-b}{(a+b)(a+c)}$$

$$\text{i.e. } \frac{b-a}{(b+c)(a+c)} = \frac{c-b}{(a+b)(a+c)}$$

$$\text{i.e. } \frac{b-a}{b+c} = \frac{c-b}{a+b}$$

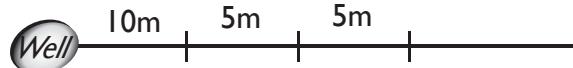
$$\text{i.e. } (b-a)(a+b) = (c-b)(b+c)$$

$$\text{i.e. } ab + b^2 - a^2 - ab = bc + c^2 - b^2 - bc$$

$$\text{i.e. } b^2 - a^2 = c^2 - b^2$$

$\therefore a^2, b^2, c^2$ are in A.P.

40.



Distance covered by gardener to water 1st tree and return to the initial position

$$= 10 \text{ m} + 10 \text{ m} = 20 \text{ m}$$

Distance covered by gardener to water 2nd tree and return to initial position

$$= 15 \text{ m} + 15 \text{ m} = 30 \text{ m}$$

Distance covered by gardener to water 3rd tree and return to initial position.

$$= 20 \text{ m} + 20 \text{ m} = 40 \text{ m}$$

So, we get an AP: 20, 30, 40, ...

With first term (a) = 20

difference (d) = 10

Total distance covered by the gardener

$$= S_{25}$$

$$= \frac{25}{2} [2(20) + (25 - 1)10]$$

$$= \frac{25}{2} [40 + 240]$$

$$= \frac{25}{2} \times 280$$

$$= 25 \times 140$$

$$= 3500 \text{ m}$$

\therefore Total distance covered by the gardener to water all trees = 3500 m

MULTIPLE CHOICE QUESTIONS

1. $\triangle ABC \sim \triangle PQR$

$$\begin{aligned} \therefore \frac{ar\triangle ABC}{ar\triangle PQR} &= \left(\frac{BC}{QR}\right)^2 \\ \Rightarrow \frac{9}{16} &= \frac{(4.5)^2}{(QR)^2} \\ \Rightarrow (QR)^2 &= \frac{4.5 \times 4.5 \times 16}{9} \\ \Rightarrow QR &= \frac{4.5 \times 4}{3} \\ &= 1.5 \times 4 \\ &= 6 \text{ cm} \end{aligned}$$

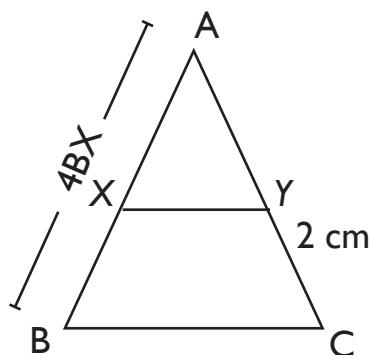
2. We know that ratio of area of two similar triangles is equal to square of ratio of their Corresponding sides (say x and y)

$$\Rightarrow \frac{9}{16} = \left(\frac{x}{y}\right)^2$$

$$\Rightarrow \frac{x}{y} = \frac{3}{4}$$

Option (a)

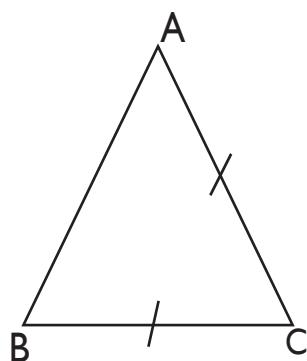
3.



AS $XY \parallel BC$, so by basic proportionality theorem

$$\begin{aligned} \frac{AX}{BX} &= \frac{AY}{YC} \\ \frac{AX}{BX} + 1 &= \frac{AY}{YC} + 1 \\ \frac{AB}{BX} &= \frac{AC}{CY} \\ \frac{4BX}{BX} &= \frac{AC}{2} (\therefore AB = 4BX) \\ 4 &= \frac{AC}{2} 25 \\ AC &= 8 \text{ cm} \\ \text{So, } AY &= AC - CY \\ &= 8 - 2 \\ &= 6 \text{ cm} \end{aligned}$$

4.



$$AB^2 = 2 AC^2$$

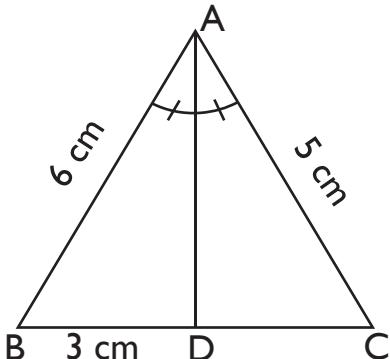
$$= AC^2 + AC^2$$

$$= AC^2 + BC^2 +$$

$\therefore AC = BC$
 $\therefore AB^2 = AC^2 + BC^2$
 $\therefore \triangle ABC$ is a triangle right angled at C
 i.e. $\angle C = 90^\circ$

Option (c)

5.



AS AD bisects $\angle BAC$

$$\therefore \frac{AB}{BD} = \frac{AC}{CD}$$

[By internal angle bisector theorem]

$$\Rightarrow \frac{6}{3} = \frac{5}{CD}$$

$$\Rightarrow CD = \frac{3 \times 5}{6} = 2.5 \text{ cm}$$

Option (b)

WORKSHEET 1

Section A

I. $\triangle ABC \sim \triangle DEF$

$$\text{In } \triangle ABC, \angle A + \angle B + \angle C = 180^\circ$$

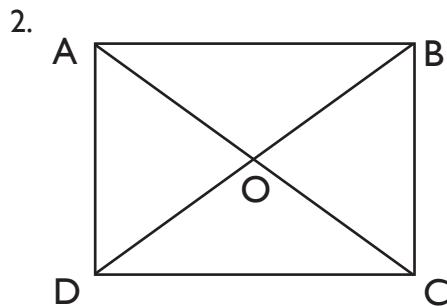
$$57^\circ + \angle B 73^\circ = 180^\circ$$

$$\angle B + 130^\circ = 180^\circ$$

$$\begin{aligned} \angle B &= 108^\circ - 130^\circ \\ &= 50^\circ \end{aligned}$$

$$\therefore \angle E = \angle B = 50^\circ$$

[Corresponding angles of similar triangles are equal.]



$$AC = 30 \text{ cm}$$

$$BD = 40 \text{ cm}$$

$$OA = OC = \frac{1}{2} AC = 15 \text{ cm}$$

$$OB = OD = \frac{1}{2} BD = 20 \text{ cm}$$

In $\triangle AOB, \angle AOB = 90^\circ$

(Diagonals of rhombus bisect each other at 90°)

$$AB^2 = AO^2 + OB^2 \quad (\text{Pythagoras theorem})$$

$$= (15^2) + (20^2)$$

$$= 225 + 400$$

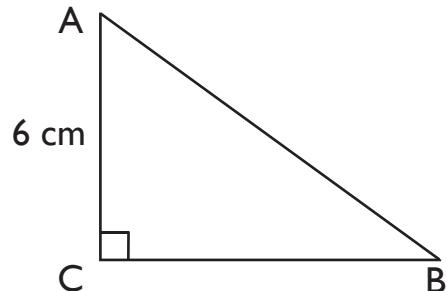
$$= 625$$

$$AB = 25 \text{ cm}$$

$$\therefore AB = BC = CA = AD = 25 \text{ cm}$$

(All sides of rhombus are equal)

3.



In $\triangle ABC$,

$$AC = BC = 6 \text{ cm} \quad (\text{AS } \triangle ABC \text{ is isosceles})$$

Also, $\angle C = 90^\circ$

$$\therefore AB^2 = AC^2 + BC^2 \quad (\text{Pythagoras theorem})$$

$$= 6^2 + 6^2$$

$$= 36 + 36$$

$$AB^2 = 72$$

$$AB = 6\sqrt{2} \text{ cm}$$

4. As, $\triangle DEF \sim \triangle ABC$

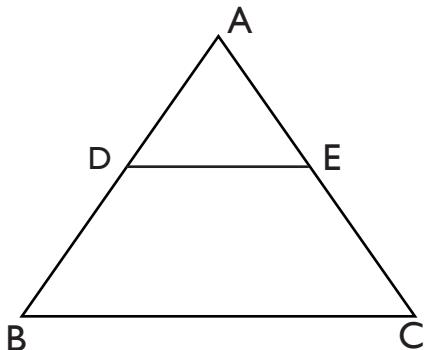
$$\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC}$$

$$\frac{DE}{3} = \frac{4}{2} = \frac{DF}{2.5}$$

$$\begin{aligned} \frac{DE}{3} &= \frac{4}{2} & \frac{4}{2} &= \frac{DF}{2.5} \\ DE &= \frac{12}{2} & DF &= \frac{4 \times 2.5}{2} \\ &= 6 \text{ cm} & &= 5 \text{ cm} \end{aligned}$$

$$\begin{aligned} \text{Perimeter of } \triangle DEF &= DF + EF + DE \\ &= 6 + 4 + 5 = 15 \text{ cm} \end{aligned}$$

5.



$$\text{Let } AE = x \text{ cm}$$

$$\therefore CE = AC - AE = 5.6 - x \text{ cm}$$

As $DE \parallel BC$,

$$\frac{AD}{DB} = \frac{AE}{CE}$$

(By Basic proportionality theorem)

$$\frac{3}{5} = \frac{x}{5.6 - x}$$

$$5x = 3(5.6 - x)$$

$$5x = 16.8 - 3x$$

$$8x = 16.8$$

$$x = 2.1 \text{ cm}$$

$$\therefore AE = x = 2.1 \text{ cm}$$

6. We know that ratio of the areas of two similar triangles is equal to the square of their altitudes.

$$\therefore \text{Ratio of areas} = \left(\frac{2}{3}\right)^2 = 4.9$$

7. Given: $abc \sim def$

Find: Area of def

$$\frac{\text{Area of def}}{\text{Area of abc}} = \frac{ef}{bc}$$

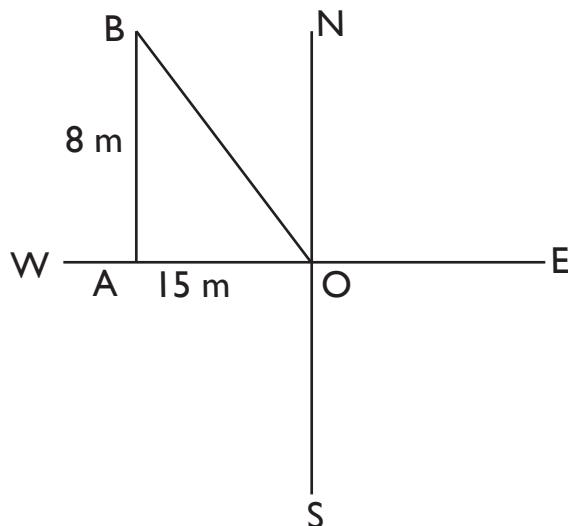
$$\frac{\text{Area of def}}{54} = \frac{4}{3}$$

$$\text{Area of def} = 4 \times \frac{54}{3}$$

$$\text{Area of def} = 4 \times 18$$

$$\text{Area of def} = 72 \text{ cm}^2$$

8.



In $\triangle BAO$, $\angle BAO = 90^\circ$

$$OB^2 = AB^2 + AO^2 \text{ (Pythagoras theorem)}$$

$$= 8^2 + 15^2$$

$$= 64 + 225$$

$$= 289$$

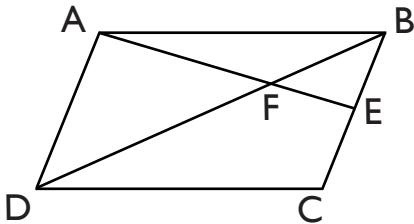
$$\therefore OB = 17 \text{ m}$$

Section B

9. $\triangle ABC \sim \triangle DEF$,

$$\frac{\text{ar} \triangle ABC}{\text{ar} \triangle DEF} = \frac{BC^2}{EF^2}$$

14.



In $\triangle AFD$ and $\triangle BEF$

(Alternate interior angles)

$$\angle AFD = \angle BFE$$

(Vertically opposite angles)

$$\therefore \triangle AFD \sim \triangle EFB$$

$$\text{So, } \frac{EF}{FA} = \frac{FB}{DF}$$

(Corresponding sides of similar triangles are proportional.)

$$DF \times EF = FB \times FA$$

15. As $DE \parallel AC$, So in $\triangle ABC$

$$\frac{BC}{CP} = \frac{BE}{EC} \quad (\text{i})$$

(Basic proportionality theorem)

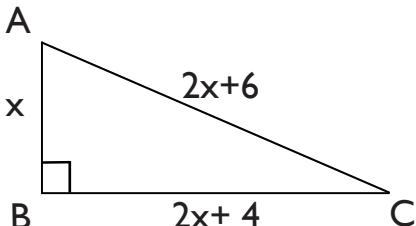
$$\text{Also, } \frac{BE}{EC} = \frac{BC}{CP} \quad (\text{ii}) \quad (\text{Given})$$

$$\text{From (i), (ii), we have } \frac{BD}{AD} = \frac{BC}{CP}$$

$$\therefore DC \parallel AP$$

(By converse of Basic proportionality theorem.)

16.



Let the shorter side be x m

$$\therefore \text{Hypotenuse} = 2x + 6$$

$$\begin{aligned} \text{Also, Third side} &= 2x + 6 - 2 \\ &= 2x + 4 \end{aligned}$$

$$\text{In } \triangle ABC, AC^2 = AB^2 + BC^2$$

$$(2x + 6)^2 = x^2 + (2x + 4)^2$$

$$4x^2 + 36 + 24x = x^2 + 4x^2 + 16 + 16x$$

$$0 = x^2 - 20 - 8x$$

$$x^2 - 8x - 20 = 0$$

$$x^2 - 10x + 2(x^2 - 10) = 0$$

$$(x^2 - 10)(x - 2) = 0$$

$$x = 10, -2$$

Being a side, $x = -2$ is rejected

$$\therefore x = 10$$

$$\text{So, AB} = 10 \text{ m}$$

$$\text{BC} = 2x + 4 = 24 \text{ m}$$

$$\text{AC} = 2x + 6 = 26 \text{ m}$$

17. We know that diagonals of rhombus bisect each other at 90° .

$$\text{Let } AC = 24 \text{ cm}$$

$$BD = 10 \text{ cm}$$

$$AO = OC = \frac{1}{2} AC = 12 \text{ cm}$$

$$BO = OD = \frac{1}{2} BD = 5 \text{ CM}$$

In $\triangle AOB$,

$$AB^2 = BO^2 + AO^2$$

$$= 5^2 + 12^2$$

$$= 25 + 144$$

$$= 169$$

$$\therefore AB = 13 \text{ cm}$$

As all sides of rhombus are equal,

$$AB = BC = CD = AD = 13 \text{ cm}$$

18. In $\triangle ABC$, $DE \parallel BC$

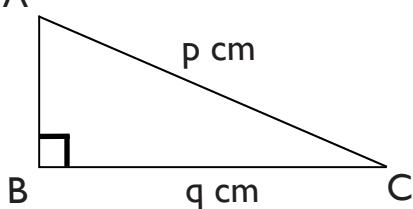
$$\frac{AD}{DB} = \frac{AE}{EC}$$

[Basic proportionality theorem]

$$\begin{aligned}
 \frac{x}{x-2} &= \frac{x-2}{x-1} \\
 x(x-1) &= (x-2)(x+2) \\
 x^2 - x &= x^2 - 4 \\
 x &= 4
 \end{aligned}$$

Section C

19.



$$\text{In } \triangle ABC, AC^2 = AB^2 + BC^2$$

$$p^2 = AB^2 + q^2$$

$$\begin{aligned}
 AB^2 &= p^2 - q^2 \\
 &= (p - q)(p + q) \\
 &= l(p + q)
 \end{aligned}$$

$$AB^2 = p + q$$

$$AB = \sqrt{p+q}$$

$$20. \quad \frac{QT}{PR} = \frac{QR}{QS} \text{ (Given)}$$

$$\text{In } \triangle PQR, \angle 1 = \angle 2$$

$$\therefore PQ = PR$$

[sides opposite to equal angles are equal]

$$\text{So, } \frac{QT}{PR} = \frac{QR}{QS}$$

$$\text{Also, } \angle Q = \angle Q \quad \text{(common)}$$

$$\therefore \triangle PQS \sim \triangle TQR$$

[By SAS Similarity criterion]

21. In $\triangle CBQ$ and $\triangle CAP$,

$$\angle BCQ = \angle ACP \quad \text{(common)}$$

$$\angle QBC = \angle PAC = 90^\circ$$

(PA and QB are perpendicular)

$\therefore \triangle CBQ \sim \triangle CAP$ (AA Similarity criterion)

$$\frac{BC}{AC} = \frac{BQ}{AP} = \frac{CQ}{CP}$$

[Corresponding sides of similar triangles are proportional]

$$\frac{BC}{AC} = \frac{Z}{x} \quad (i)$$

In $\triangle ABQ$ and $\triangle ACR$,

$$\angle BAQ = \angle CAR \text{ (common)}$$

$$\angle ABQ = \angle ACR = 90^\circ$$

(BQ and RC are perpendicular)

$\therefore \triangle ABQ \sim \triangle ACR$ (AA Similarity criterion)

$$\frac{AB}{AC} = \frac{BQ}{CR} = \frac{AQ}{AR}$$

$$\frac{AB}{AC} = \frac{Z}{Y} \quad (ii)$$

From (i),

$$1 - \frac{BC}{AC} = 1 - \frac{Z}{x}$$

$$\frac{AC - BC}{AC} = \frac{x - z}{x}$$

$$\frac{AB}{AC} = \frac{x - z}{x} \quad (iii)$$

From (ii) and (iii)

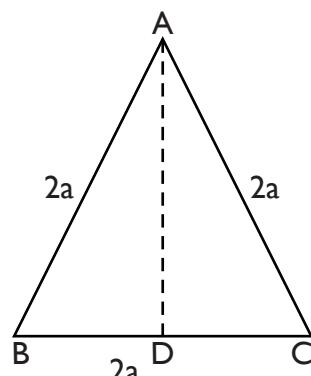
$$\frac{AB}{AC} = \frac{Z}{Y} = \frac{x - z}{x}$$

$$\frac{Z}{Y} = 1 - \frac{z}{x}$$

$$\frac{z}{x} + \frac{z}{y} = 1$$

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$

22.



Draw $AD \perp BC$

In $\triangle ADB$ and $\triangle ADC$

$$AB = AC = 2a \quad (\text{Given})$$

$$\begin{aligned} AD &= AD \\ &\text{(Common)} \end{aligned}$$

$$\begin{aligned} \angle ADB &= \angle ADC \\ &= 90^\circ \quad (\text{By Construction}) \end{aligned}$$

$$\therefore \triangle ADB \cong \triangle ADC \quad (\text{RHS})$$

$$\begin{aligned} \therefore BD &= DC = \frac{1}{2} BC \\ &= a \quad (\text{CPCT}) \end{aligned}$$

In $\triangle ADC$, right angled at D

$$AC^2 = AD^2 + DC^2$$

$$(2a)^2 = AD^2 + a^2$$

$$AD^2 = 4a^2 - a^2 = 3a^2$$

$$AD = \sqrt{3}a$$

So, length of the altitude of an equilateral triangle $= \sqrt{3}a \text{ cm}$

23. In $\triangle AOB$, $XY \parallel AB$

$$\therefore \frac{OX}{AX} = \frac{OY}{BY}$$

(i) [Basic Proportionality theorem]

In $\triangle AOC$, $XZ \parallel AC$

$$\therefore \frac{OZ}{ZC} = \frac{OX}{AX}$$

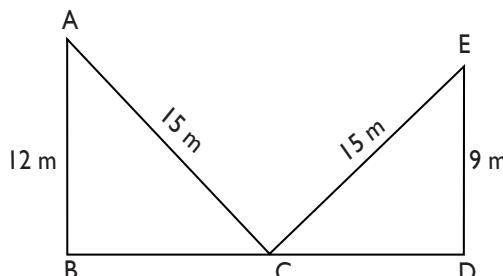
(ii) [Basic Proportionality theorem]

$$\text{By (i) and (ii), } \frac{OY}{BY} = \frac{OZ}{ZC}$$

$$\therefore YZ \parallel BC$$

[By Converse of Basic proportionality theorem]

24.



Let $AC = CE$ denotes the ladder

$$\text{In } \triangle ABC, AC^2 = AB^2 + BC^2$$

$$15^2 = 12^2 + BC^2$$

$$225 - 144 = BC^2$$

$$BC^2 = 81$$

$$BC = 9 \text{ m}$$

$$\text{In } \triangle CDE, CE^2 = DE^2 + CD^2$$

$$15^2 = 9^2 + CD^2$$

$$225 - 81 = CD^2$$

$$144 = CD^2$$

$$12 = CD$$

$$\text{So, } BD = BC + CD$$

$$= 9 + 12 = 21 \text{ m}$$

Section D

25. In $\triangle XPQ$ and $\triangle XYZ$,

$$\frac{XP}{PY} = \frac{XQ}{XZ} = 3 \quad (\text{Given})$$

$$\angle X = \angle X \quad (\text{Common})$$

$$\therefore \triangle XPQ \sim \triangle XYZ$$

(SAS Similarity criterion)

$$\text{So, } \frac{\text{ar } \triangle XPQ}{\text{ar } \triangle XYZ} = \left(\frac{XP}{XY} \right)^2 = \left(\frac{PQ}{YZ} \right)^2 = \left(\frac{XQ}{XZ} \right)^2$$

[Ratio of area of two similar triangles is equal to square of their corresponding sides]

$$\frac{\text{ar } \triangle XPQ}{32} = \left(\frac{XP}{XY} \right)^2 = \left(\frac{3}{4} \right)^2$$

$$\text{ar } \triangle XPQ = \frac{9}{16} \times 32 \quad \left[\begin{aligned} \frac{XP}{PY} &= 3 \\ \frac{PY}{XP} &= \frac{1}{3} \\ \frac{PY}{XP} + 1 &= \frac{1}{3} + 1 \\ \frac{XY}{XP} &= \frac{4}{3} \end{aligned} \right]$$

$$= 18 \text{ cm}^2$$

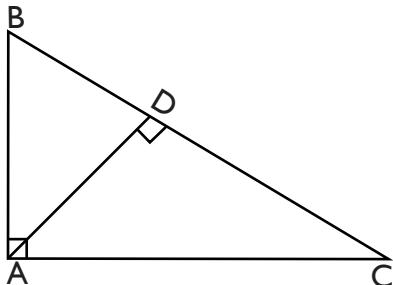
area of quadrilateral PYZQ

$$= \text{ar } \triangle XYZ - \text{ar } \triangle XQP$$

$$= 32 - 18$$

$$= 14 \text{ cm}^2$$

26.



In $\triangle ABC$, right angled at B,

We need to prove $AC^2 = AB^2 + BC^2$

Draw $BD \perp AC$

We know that if a perpendicular drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

So, $\triangle CBA$ and $\triangle CDB$

[Corresponding sides of similar triangles are proportionals

$$\frac{CB}{CD} = \frac{CA}{CB}$$

$$CB^2 = CA \times CD \quad (\text{i})$$

Also, $\triangle ABC$ and $\triangle ADB$

$$\frac{AB}{AD} = \frac{BC}{BD} = \frac{AC}{AB}$$

$$\frac{AB}{AD} = \frac{AC}{AB}$$

$$AB^2 = AC \times AD \quad (\text{ii})$$

From (i) and (ii),

$$AB^2 + BC^2 = AC \times AD + AC \times CD$$

$$= AC (AD + CD)$$

$$= AC \times AC$$

$$= AC^2$$

$$\therefore AB^2 + BC^2 = AC^2$$

27. As $XY \parallel AC$

$$\angle BXY = \angle A \quad (\text{Corresponding angles})$$

$$\angle BYX = \angle C \quad (\text{Corresponding angles})$$

$\therefore \triangle ABC \sim \triangle XBY$ (AA Similarity Criterion)

$$\text{So, } \frac{\text{ar } \triangle ABC}{\text{ar } \triangle XBY} = \left(\frac{AB}{XB} \right)^2 \quad (\text{i})$$

[Ratio of areas of two similar triangles is equal to square of ratio of their corresponding sides]

$$\text{Also, ar } \triangle ABC = 2 \text{ ar } (\triangle XBY)$$

$$\text{i.e. } \frac{\text{ar } \triangle ABC}{\text{ar } \triangle XBY} = \frac{2}{1} \quad (\text{ii})$$

From (i) and (ii),

$$\left(\frac{AB}{XB} \right)^2 = \frac{2}{1}$$

$$\frac{AB}{XB} = \frac{\sqrt{2}}{1}$$

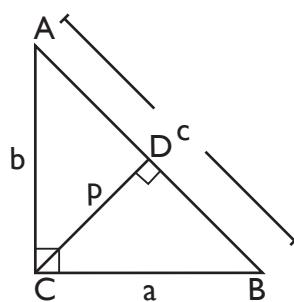
$$\frac{XB}{AB} = \frac{1}{\sqrt{2}}$$

$$\therefore 1 - \frac{XB}{AB} = 1 - \frac{1}{\sqrt{2}}$$

$$\frac{AB - XB}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

$$\frac{XB}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}} = \frac{2 - \sqrt{2}}{2}$$

28.



In $\triangle ACB$, right angled at C such that $CD \perp AB$.

We know that if a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other

So, $\triangle BDC \sim \triangle BCA$

$$\therefore \frac{BD}{BC} = \frac{DC}{CA} = \frac{BC}{BA}$$

$$\text{i.e. } \frac{p}{b} = \frac{a}{c}$$

$$pc = ab$$

$$\Rightarrow p = \frac{ab}{c}$$

$$\Rightarrow p^2 = \frac{a^2 b^2}{c^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{c^2}{a^2 b^2}$$

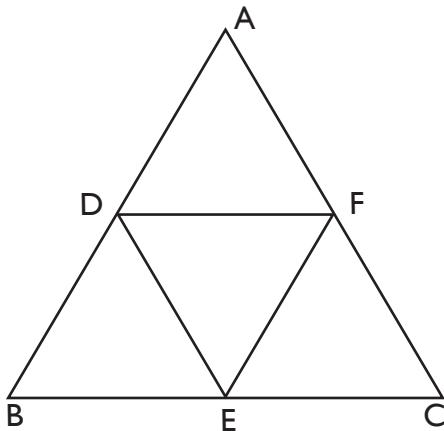
In $\triangle ACB$, $AC^2 + BC^2 = AB^2$ $b^2 + a^2 = c^2$

$$\frac{1}{p^2} = \frac{a^2 + b^2}{a^2 b^2}$$

$$\frac{1}{p^2} = \frac{a^2}{a^2 b^2} + \frac{b^2}{a^2 b^2}$$

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

29.



Given that:-

$\triangle ABC$ in which D, E, F are the mid points of sides AB, BC and CA respectively.

To prove:- each of the triangles are similar to the original triangle, i.e.,

$\triangle ADF \sim \triangle ABC$

$\triangle BDE \sim \triangle ABC$

$\triangle CEF \sim \triangle ABC$

Proof:-

Consider the $\triangle ADF$ and $\triangle ABC$

Since D and F are the mid points of AB and AC respectively.

$\therefore DF \parallel BC$

$\Rightarrow \angle AFD = \angle B$ (Corresponding angles are equal)

Now, in $\triangle ADF$ and $\triangle ABC$, we have

$\angle ADF = \angle B$ (Corresponding angles)

$\angle A = \angle A$ (Common)

By AA similar conditions,

$\triangle ADF \sim \triangle ABC$

Similarly, we have

$\triangle BDE \sim \triangle ABC$

$\triangle CEF \sim \triangle ABC$

$\therefore EF \parallel AB$

$\Rightarrow EF \parallel AD \dots\dots\dots(1)$

And, $DE \parallel AC$

$\Rightarrow DE \parallel AF \dots\dots\dots(2)$

From eqn (1) and (2), we have

$ADEF$ is a parallelogram.

Similarly, $BDFE$ is a parallelogram.

Now, in $\triangle ABC$ and $\triangle DEF$

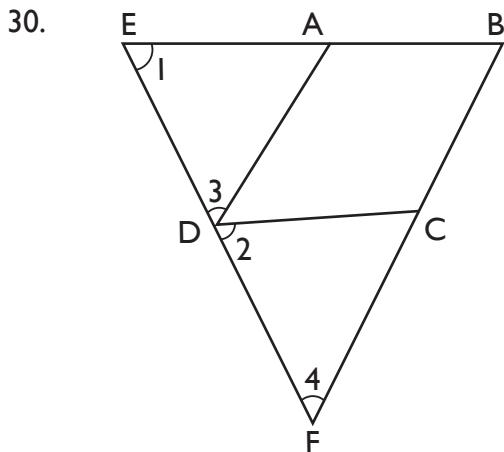
$\angle A = \angle FED$ (\because Opposite angles of parallelogram)

$\angle B = \angle DFE$ (\because Opposite angles of parallelogram)

Therefore, by AA similar condition

$\triangle ABC \sim \triangle DEF$

Hence proved that each of the triangles are similar to the original triangle.



Consider $\triangle EDA$ and $\triangle EFB$

$$\angle I = \angle 2 \quad (\text{Common})$$

$$\angle 3 = \angle 4$$

[Corresponding angles as $AD \parallel BF$]

$$\therefore \triangle EDA \sim \triangle EFB$$

(AA Similarity Criterion)

$$\therefore \frac{DA}{FB} = \frac{EA}{EB}$$

[Corresponding sides of similar triangles proportional]

$$\Rightarrow \frac{DA}{AE} = \frac{FB}{BE} \quad (\text{i})$$

Consider $\triangle EDA$ and $\triangle DFC$

$$\angle I = \angle 2 \quad (\text{Corresponding angles as } BE \parallel CD)$$

$$\angle 3 = \angle 4 \quad (\text{Corresponding angles as } AD \parallel BF)$$

$$\therefore \triangle EDA \sim \triangle DFC \quad (\text{AA Similarity Criterion})$$

$$\therefore \frac{ED}{DF} = \frac{DA}{FC} = \frac{EA}{DC}$$

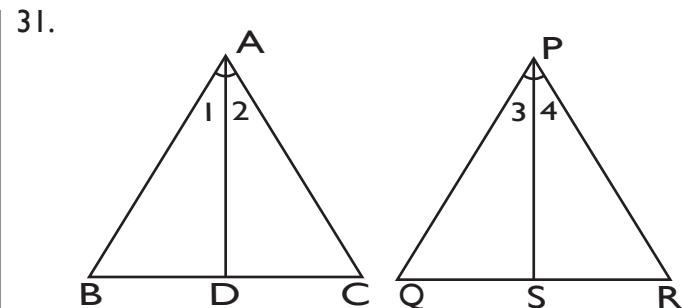
[Corresponding sides of similar triangles are proportional]

$$\text{i.e. } \frac{DA}{FC} = \frac{EA}{DC}$$

$$\Rightarrow \frac{DA}{AE} = \frac{FC}{CD} \quad (\text{ii})$$

From (i) and (ii),

$$\frac{DA}{AE} = \frac{FB}{BE} = \frac{FC}{CD}$$



Given : AD and PS are bisectors of $\angle A$ and $\angle P$ respectively. Such that

$$\frac{BD}{DC} = \frac{QS}{SR}$$

To prove = $\triangle ABC \sim \triangle PQR$

Proof In $\triangle ABC$, AD is bisector of $\angle A$

$$\therefore \frac{AB}{BD} = \frac{AC}{CD}$$

$$\text{i.e. } \frac{AB}{AC} = \frac{BD}{CD} \quad (\text{i})$$

In $\triangle PQR$, PS is bisector of $\angle P$

$$\therefore \frac{PQ}{QS} = \frac{PR}{RS}$$

$$\text{i.e. } \frac{PQ}{PR} = \frac{QS}{RS} \quad (\text{ii})$$

$$\text{Also, } \frac{BD}{DC} = \frac{QS}{SR} \quad (\text{iii})$$

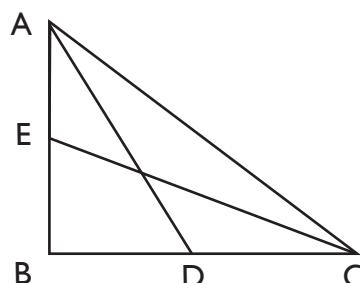
From (i), (ii), (iii), we get

$$\frac{AB}{AC} = \frac{PQ}{PR} \Rightarrow \frac{AB}{PQ} = \frac{AC}{PR}$$

Also, $\angle A = \angle P$ (Given)

$$\therefore \triangle ABC \sim \triangle PQR$$

32.



$\triangle ABC$ is a right triangle right-angled at B

$$\therefore AD^2 = AB^2 + BD^2$$

(By Pythagoras theorem)

$$\Rightarrow AD^2 = AB^2 + \left(\frac{BC}{2}\right)^2 \quad [\because BD = DC]$$

$$\Rightarrow AD^2 = AB^2 + \frac{1}{4} BC^2 \quad (\text{i})$$

Also, $\triangle BCE$ is a right triangle right angled at B

$$\therefore CE^2 = BC^2 + BE^2$$

$$\Rightarrow CE^2 = BC^2 + \left(\frac{AB}{2}\right)^2 \quad [\because BE = EA]$$

$$\Rightarrow mCE^2 = BC^2 + \frac{1}{4} AB^2 \quad (\text{ii})$$

On adding (i) and (ii), we get

$$AD^2 + CE^2 = \frac{5}{4} (AB^2 + BC^2)$$

$$\Rightarrow AD^2 + CE^2 = \frac{5}{4} AC^2$$

[As $\triangle ABC$ is right triangle
 $\therefore AC^2 = AB^2 + BC^2$]

$$\Rightarrow \left(\frac{3\sqrt{5}}{2}\right)^2 + CE^2 = \frac{5}{4} (25)$$

$$\Rightarrow CE^2 = \frac{125}{4} - \frac{45}{4} = 20$$

$$\therefore CE = \sqrt{20} \text{ cm} = 2\sqrt{5} \text{ cm}$$

WORKSHEET 2

Section A

1. $\triangle ABC \sim \triangle RPQ$

$$\therefore \frac{AB}{RP} = \frac{BC}{PQ} = \frac{AC}{RQ}$$

[Corresponding sides of similar triangles are proportional]

$$\therefore \frac{3}{6} = \frac{5}{10} = \frac{6}{RQ}$$

$$RQ = \frac{6 \times 10}{5} = 12 \text{ cm}$$

2. $\triangle DABC \sim \triangle DDEF$

$$\therefore \frac{ar_{\triangle ABC}}{ar_{\triangle DEF}} = \left(\frac{AB}{DE}\right)^2$$

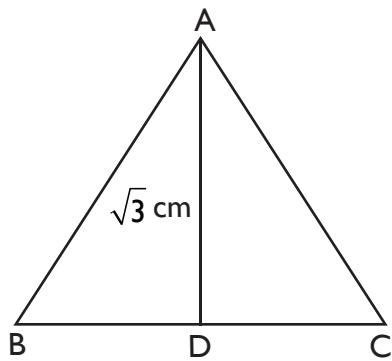
[Ratio of areas of similar triangles is Proportional to the square of ratio of ratio of their corresponding sides]

$$\Rightarrow \frac{169}{121} = \frac{(26)^2}{DE}$$

$$\Rightarrow DE^2 = \frac{(26)^2 \times 121}{169}$$

$$\Rightarrow DE = \frac{26 \times 11}{13} = 22 \text{ cm}$$

3.



$\triangle ABC$ is equilateral and AD is the Median such that $AD = \sqrt{3} \text{ cm}$

In an equilateral triangle, median and altitude are same

$$\therefore AD \perp BC$$

$$\text{Also, } DC = \frac{1}{2} AC$$

[As AD is the Median]

$$AC^2 = AD^2 + CD^2$$

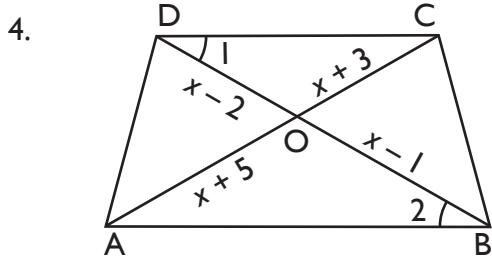
$$AC^2 = (\sqrt{3})^2 + \left(\frac{1}{2} AC\right)^2$$

$$AC^2 = 3 + \frac{1}{4} AC^2$$

$$\frac{3}{4} AC^2 = 3$$

$$AC^2 = 4$$

$$AC = 2 \text{ cm}$$



4.

In $\triangle COD$ and $\triangle AOB$,

$$\angle 1 = \angle 2$$

[Corresponding angles as $AB \parallel CD$]

$$\angle AOB = \angle COD$$

[Vertically opposite angles]

$$\therefore \triangle COD \sim \triangle AOB$$

$$\therefore \frac{CO}{AO} = \frac{OD}{OB} = \frac{CD}{AB}$$

[Corresponding sides of similar triangles are proportional.]

$$\frac{x+3}{x+5} = \frac{x-2}{x-1}$$

$$\Rightarrow (x+3)(x-1) = (x-2)(x+5)$$

$$\Rightarrow x^2 + 2x - 3 = x^2 + 3x - 10$$

$$\Rightarrow 7 = x$$

5. In $\triangle SPT$ and $\triangle QPR$,

$$\angle PST = \angle PQR$$

[Corresponding angles as $ST \parallel QR$]

$$\angle PTS = \angle PRQ$$

$$\therefore \triangle SPT \sim \triangle QPR$$

[AA Similarity Criterion]

$$\therefore \frac{ar_{\triangle PST}}{ar_{\triangle PQR}} = \left(\frac{PT}{PR} \right)^2$$

[Ratio of areas of two similar triangles is equal to square of ratio of their corresponding sides]

$$= \left(\frac{PT}{PT+TR} \right)^2$$

$$= \left(\frac{2}{2+4} \right)^2$$

$$= \left(\frac{2}{6} \right)^2$$

$$= \frac{1}{9}$$

6. $DE \parallel BC$

$$\therefore \frac{AD}{BD} = \frac{AC}{CE}$$

(Basic Proportionality theorem)

$$\Rightarrow \frac{BD}{AD} = \frac{CE}{AE}$$

$$\Rightarrow \frac{BD}{AD} + 1 = \frac{CE}{AE} + 1$$

$$\Rightarrow \frac{BD+AD}{AD} = \frac{CE+AE}{AE}$$

$$\frac{AB}{AD} = \frac{AC}{AE}$$

Also, $\angle A = \angle A$ (Common)

$\therefore \triangle ADE \sim \triangle ABC$

$$\Rightarrow \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$$

[Corresponding sides of similar triangles are proportional]

$$\Rightarrow \frac{AD}{AB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{1.5}{6} = \frac{DE}{8}$$

$$\Rightarrow DE = \frac{1.5 \times 8}{6} = 2 \text{ cm}$$

7. As $MN \parallel AB$,

$$\frac{CM}{AM} = \frac{CN}{BN}$$

(Basic proportionality theorem)

$$\frac{2}{4} = \frac{BC - BN}{BN}$$

$$\frac{1}{2} = \frac{7.5 - BN}{BN}$$

$$\therefore BN = 15 - 2BN$$

$$\Rightarrow 3BN = 15$$

$$BN = 5 \text{ cm}$$

8. We know that ratio of area of two similar triangles is equal to square of ratio of their corresponding sides.

So, Ratio of corresponding sides

$$= \sqrt{\frac{25}{64}} = \frac{5}{8}$$

9. $DE \parallel BC$

$$\Rightarrow \frac{AD}{DB} = \frac{AE}{CE}$$

[Basic proportionality theorem]

$$\Rightarrow \frac{DB}{AD} + 1 = \frac{CE}{AE} + 1$$

$$\Rightarrow \frac{AB}{AD} = \frac{AC}{AE}$$

Also, $\angle A = \angle A$ (Common)

$\therefore \triangle ADE \sim \triangle ABC$

(SAS Similarity Criterion)

$$\therefore \frac{ar_{\triangle ADE}}{ar_{\triangle ABC}} = \left(\frac{DE}{BC} \right)^2$$

$$\frac{ar_{\triangle ADE}}{81} = \frac{\left(\frac{2}{3} BC \right)^2}{BC^2}$$

$$\frac{ar_{\triangle ADE}}{81} = \frac{4}{9}$$

$$ar_{\triangle ADE} = \frac{4}{9} \times 81 = 36 \text{ cm}^2$$

10. Considers $AC^2 + BC^2$

$$= AC^2 + BC^2 \quad (\because AC = BC)$$

$$= 2AC^2$$

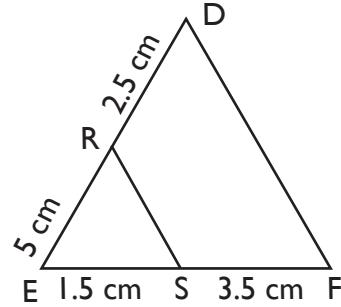
$$= AB^2$$

$\therefore \triangle ABC$ is right angled triangle

[As we know that in a triangle, if square of one side is equal to sum of the squares of other two sides then the angle opposite the first side is a right angle.]

Section B

11.



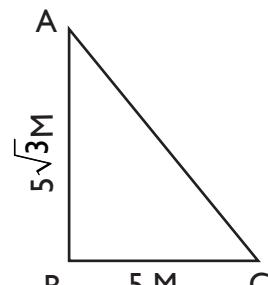
In a triangle $\triangle DEF$, R and S are two points on the sides DE and EF respectively. ER=5cm, RD=2.5cm, FS=3.5 and SD=1.5cm.

$$\therefore \frac{ER}{RD} = \frac{5}{2.5} = \frac{2}{1} \text{ and } \frac{FS}{SD} = \frac{3.5}{1.5} = \frac{7}{3}$$

$$\therefore \frac{ER}{RD} \neq \frac{FS}{SD}$$

$\therefore RS$ is not parallel to DF.

12.



In $\triangle ABC$, right angled at B

$$AC^2 = AB^2 + BC^2$$

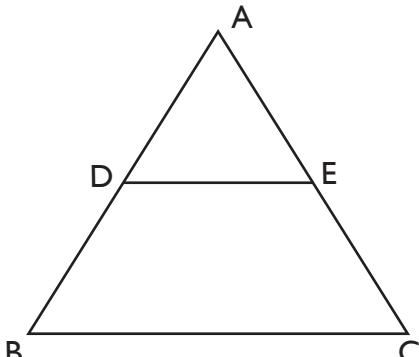
$$= (5\sqrt{3})^2 + (5)^2$$

$$= 75 + 25$$

$$= 100$$

$$\therefore AC = 10 \text{ M}$$

13.

As $DE \parallel BC$

$$\begin{aligned} \frac{AD}{DB} &= \frac{AE}{CE} \\ \frac{BD}{AD} &= \frac{CE}{AE} \\ \Rightarrow \frac{BD}{AD} + 1 &= \frac{CE}{AE} + 1 \\ \Rightarrow \frac{AB}{AD} &= \frac{AC}{AE} \\ \Rightarrow \frac{AD}{AB} &= \frac{AE}{AC} \quad (i) \\ \text{Also, } \angle A &= \angle A \quad (\text{Common}) \end{aligned}$$

 $\therefore \triangle ADE \sim \triangle ABC$ (SAS Similarity Criterion)

$$\therefore \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$$

[Corresponding sides of similar triangles are proportional]

$$\begin{aligned} \Rightarrow \frac{AD}{AD+BD} &= \frac{AE}{AC} \\ \Rightarrow \frac{AD}{AD+3AD} &= \frac{4.5}{AC} \\ \Rightarrow \frac{AD}{4AD} &= \frac{4.5}{AC} \\ \Rightarrow AC &= 4.5 \times 4 = 18 \text{ cm} \end{aligned}$$

$$\text{Also, } \frac{AD}{AB} = \frac{AE}{AC} \quad (\text{From (i)})$$

$$\frac{AD}{AD+BD} = \frac{AE}{18}$$

$$\begin{aligned} \frac{AD}{AD+3AD} &= \frac{AE}{18} \\ \frac{1}{4} &= \frac{AE}{18} \\ AE &= \frac{18}{4} = \frac{9}{2} = 4.5 \text{ cm} \end{aligned}$$

14. Consider $\triangle ABC$ with sides as

$$AB = (a-1) \text{ cm}$$

$$BC = (2\sqrt{a}) \text{ cm}$$

$$AC = (a+1) \text{ cm}$$

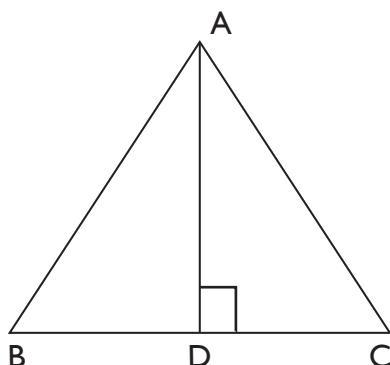
Consider $AB^2 + BC^2$

$$\begin{aligned} &= (a-1)^2 + (2\sqrt{a})^2 \\ &= a^2 - 2a + 4a \\ &= a^2 + 2a + 1 \\ &= (a+1)^2 \\ &= AC^2 \end{aligned}$$

 $\therefore \triangle ABC$ is a right angled triangle

[As we know that in a triangle if square of one side is equal to the sum of squares of other two sides, then the angle opposite the first side is a right angle i.e. triangle is right angled]

15.

Draw $AD \perp BC$ In $\triangle ADB$ and $\triangle ADC$

$$AD = AD \quad (\text{Common})$$

$$AB = AC \quad (\triangle ABC \text{ is equilateral})$$

$$\angle ADB = \angle ADC = 90^\circ \quad (\text{By Construction})$$

$\therefore \triangle ADB \cong \triangle ADC$ (RHS)

$$\Rightarrow CD = \frac{1}{2} BC = \frac{1}{2} 3\sqrt{3} \text{ cm}$$

In $\triangle ADC$,

$$AC^2 = AD^2 + CD^2$$

$$(3\sqrt{3})^2 = AD^2 + \left(\frac{3\sqrt{3}}{2}\right)^2$$

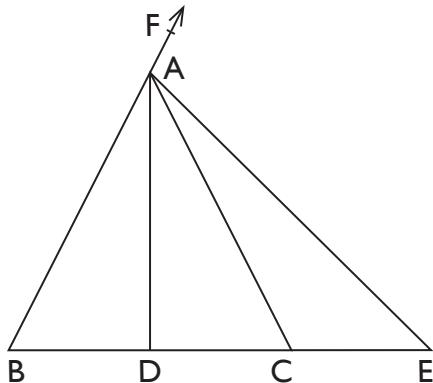
$$AD^2 = 27 - \frac{27}{4}$$

$$= \frac{108 - 27}{4}$$

$$= \frac{81}{4}$$

$$\therefore AC = \frac{9}{2} = 4.5 \text{ cm}$$

16.



$$\text{To prove } \frac{BD}{BE} = \frac{CD}{CE}$$

As AD bisects $\angle BAC$,

$$\frac{AB}{BD} = \frac{AC}{CD}$$

[Interior angle bisector theorem]

$$\therefore \frac{CD}{BD} = \frac{AC}{AB} \quad (\text{i})$$

Also, AE bisects $\angle CAF$

$$\therefore \frac{BE}{AB} = \frac{CE}{AC}$$

$$\Rightarrow \frac{BE}{CE} = \frac{AB}{AC}$$

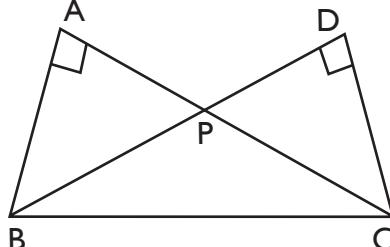
$$\Rightarrow \frac{CE}{BE} = \frac{AC}{AB} \quad (\text{ii})$$

From (i) and (ii)

[CPCT]

$$\begin{aligned} \frac{CD}{BD} &= \frac{CE}{BE} \\ \Rightarrow \frac{BD}{BE} &= \frac{CD}{CE} \end{aligned}$$

17.



To prove: $AP \times PC = BP \times PD$

Consider $\triangle APB$ and $\triangle DPC$

$\angle BAP = \angle CDP = 90^\circ$ (Given)

$\angle APB = \angle DPC$

(Vertically opposite angles)

$\therefore \triangle APB \sim \triangle DPC$ (AA similarity criterion)

$$\therefore \frac{AP}{DP} = \frac{PB}{PC} = \frac{AB}{DC}$$

(Corresponding sides of similar triangles are proportional)

$$\Rightarrow \frac{AP}{DP} = \frac{PB}{PC}$$

$$\Rightarrow AP \times PC = BP \times PD$$

18. Consider $\triangle QPM$ and $\triangle RSM$

$\angle QPM = \angle RSM = 90^\circ$

$\angle QMP = \angle RMS$

(Vertically opposite angles)

$\therefore \triangle QPM \sim \triangle RSM$ (AA similarity Criterion)

$$\therefore \frac{QP}{RS} = \frac{PM}{SM} = \frac{QM}{RM}$$

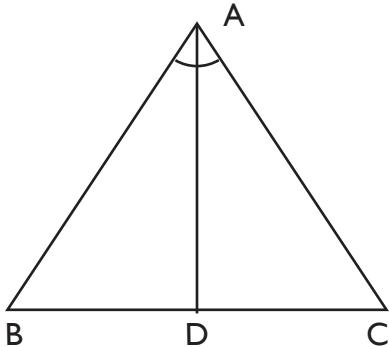
[Corresponding sides of similar triangles are proportional]

$$\text{i.e. } \frac{PM}{SM} = \frac{QM}{RM}$$

$$\frac{3}{4} = \frac{QM}{6}$$

$$QM = \frac{3 \times 6}{4} = \frac{3 \times 3}{2} = 4.5 \text{ cm}$$

19.



AD bisects $\angle A$ So, by Interior angle bisector theorem

$$\frac{AB}{AC} = \frac{BD}{DC}$$

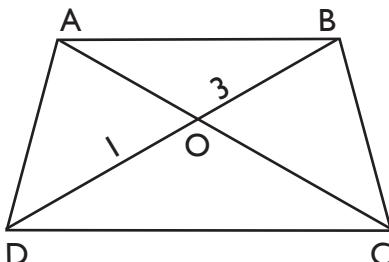
$$\frac{AB}{AC} = \frac{BD}{DC} = 1$$

[$\because BD = DC$ as D is a midpoint of BC]

$$AB = AC$$

$\therefore \triangle ABC$ is an isosceles.

20.



Here, AC divides the diagonal BD in the ratio 1 : 3

Consider $\triangle AOB$ and $\triangle COD$

$$\angle BAO = \angle DCO$$

(Alternate interior angles as $AB \parallel CD$)

$$\angle AOB = \angle COD$$

(Vertically opposite angles)

$\therefore \triangle AOB \sim \triangle COD$

(AA similarity criterion)

$$\therefore \frac{AO}{CO} = \frac{OB}{OD} = \frac{AB}{CD}$$

[Corresponding sides of similar triangles are proportional.]

$$\Rightarrow \frac{OB}{OD} = \frac{AB}{CD}$$

$$\Rightarrow \frac{3}{1} = \frac{AB}{CD}$$

$$\Rightarrow AB = 3CD$$

Section C

21. In $\triangle ADE$ and $\triangle ABC$,

$$\angle A = \angle A \quad (\text{Common})$$

$$\angle ADE = \angle ABC \quad (\text{Given})$$

$\therefore \triangle ADE \sim \triangle ABC$ (AA similarity criterion)

$$\Rightarrow \frac{AD}{AB} = \frac{DE}{BC} = \frac{AE}{AC}$$

[Corresponding sides of similar triangles are proportional]

$$\therefore \frac{AD}{AB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{7.6}{AE+BE} = \frac{DE}{8.4}$$

$$\Rightarrow \frac{7.6}{7.2+4.2} = \frac{DE}{8.4}$$

$$\Rightarrow \frac{7.6}{11.4} = \frac{DE}{8.4}$$

$$\Rightarrow DE = \frac{7.6 \times 8.4}{11.4}$$

$$= 5.6 \text{ cm}$$

22. In $\triangle ABC$, $LM \parallel BC$

$$\therefore \frac{AM}{BM} = \frac{AL}{CL}$$

(i) [Basic proportionality theorem]

In $\triangle ADC$, $LN \parallel CD$

$$\therefore \frac{AN}{DN} = \frac{AL}{CL}$$

(ii) [Basic proportionality theorem]

$$\text{From (i) and (ii), } \frac{AM}{BM} = \frac{AN}{DN}$$

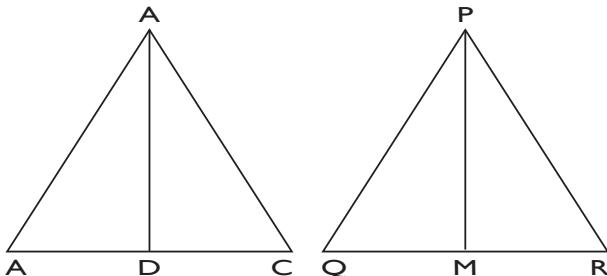
$$\Rightarrow \frac{BM}{AM} = \frac{DN}{AN}$$

$$\Rightarrow \frac{BM}{AM} + 1 = \frac{DN}{AN} + 1$$

$$\Rightarrow \frac{AB}{AM} = \frac{AD}{AN}$$

$$\Rightarrow AM \times AD = AB \times AN$$

23.



In $\triangle ABD$ and $\triangle PQM$

$$\frac{AB}{PQ} = \frac{AD}{PM} = \frac{BC}{QM} \quad (\text{Given})$$

$$\Rightarrow \frac{AB}{PQ} = \frac{AD}{PM} = \frac{BD}{QM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{AD}{PM} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR}$$

(As AD and PM are the medians)

$$\therefore \triangle ABD \sim \triangle PQM$$

(SSS similarity criterion)

$$\therefore \angle B = \angle Q$$

[Corresponding angles of similar triangles are equal]

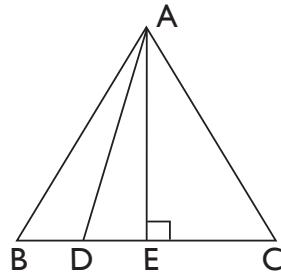
Now, In $\triangle ABC$ and $\triangle PQR$

$$\frac{AB}{PQ} = \frac{BC}{QR} \quad (\text{Given})$$

$\angle B = \angle Q$ (Proved)

$\therefore \triangle ABC \sim \triangle PQR$ (SSS similarity criterion)

24.



Let $AB = BC = AC = a$

$$\therefore BD = \frac{BC}{4} = \frac{a}{4}$$

Draw $AE \perp BC$

$$\therefore BE = EC = \frac{a}{2}$$

[In Equilateral triangle altitude is same as Median]

In right angled triangle $\triangle AED$,

$$AD^2 = DE^2 + AE^2 \quad (\text{i})$$

Now, $DE = BE - BD$

$$= \frac{a}{2} - \frac{a}{4} \quad [\because BD = \frac{1}{4} = \frac{a}{4}]$$

$$= \frac{a}{4} \quad (\text{ii})$$

In $\triangle AEC$,

$$AC^2 = AE^2 + CE^2$$

$$a^2 = AE^2 + \left(\frac{a}{2}\right)^2$$

$$AE^2 = a^2 - \frac{a^2}{4} = \frac{3a^2}{4} \quad (\text{iii})$$

On putting (ii), (iii) in (i), we get

$$\begin{aligned} AD^2 &= \left(\frac{a}{4}\right)^2 + \left(\frac{3a}{4}\right)^2 \\ &= \frac{a^2}{16} + \frac{9a^2}{16} \\ &= \frac{a^2 + 12a^2}{16} \end{aligned}$$

$$= \frac{13a^2}{16}$$

$$16AD^2 = 13a^2$$

$$16AD^2 = 13BC^2$$

25. As $\triangle ABC$ is isosceles,

$$AB = AC$$

$$\therefore \angle B = \angle C$$

(Angles opposite to equal sides are equal)

In $\triangle ADB$ and $\triangle EFC$

$$\angle ADB = \angle EFC$$

(As $EF \perp AC$ and $AD \perp CD$)

$$\angle B = \angle C \quad (\text{Proved})$$

$\therefore \triangle ADB \sim \triangle EFC$ (AA similarity criterion)

$$\therefore \frac{AD}{EF} = \frac{BD}{FC} = \frac{AB}{EC}$$

$$\text{i.e. } \frac{AD}{EF} = \frac{AB}{EC}$$

$$\Rightarrow AD \times EC = AB \times EF$$

26. In $\triangle ABC$ and $\triangle ADE$,

$$\angle A = \angle A \quad (\text{Common})$$

$$\angle ACB = \angle AED = 90^\circ$$

(As $DE \perp AB$ and $\triangle ABC$ is right angled at C)

$\therefore \triangle ABC \sim \triangle ADE$

(By AA Similarity criterion)

$$\Rightarrow \frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE}$$

[Corresponding sides of similar triangles are proportional]

In $\triangle ABC$, $\angle C = 90^\circ$

$$\therefore AB^2 = AC^2 + BC^2$$

[By Pythagoras theorem]

$$= (3 + 2)^2 + 12^2$$

$$= 25 + 144$$

$$= 169$$

$$\therefore AB = 13 \text{ cm}$$

$$\text{As } \frac{AB}{AD} = \frac{BC}{DE}$$

$$\therefore \frac{13}{3} = \frac{12}{DE}$$

$$\therefore DE = \frac{12 \times 3}{13} = \frac{36}{13} \text{ cm}$$

$$\text{Also, } \frac{BC}{DE} = \frac{AC}{AE}$$

$$\Rightarrow \frac{12}{36} = \frac{5}{AE}$$

$$\Rightarrow \frac{12 \times 13}{36} = \frac{5}{AE}$$

$$\Rightarrow AE = \frac{5 \times 36}{12 \times 13} = \frac{15}{13} \text{ cm}$$

27. As $\triangle NSQ \cong \triangle MTR$,

$$\angle NQS = \angle MRT \quad (\text{CPCT})$$

$$\Rightarrow PQ = PR \quad (\text{i})$$

(Sides opposite to equal angles are equal)

Also, as $\angle 1 = \angle 2$

$$\therefore PS = PT \quad (\text{ii})$$

(Sides opposite to equal angles are equal.)

On Subtracting (ii) from (i), we get

$$PQ - PS = PR - PT$$

$$QS = TR \quad (\text{iii})$$

From (ii) and (iii),

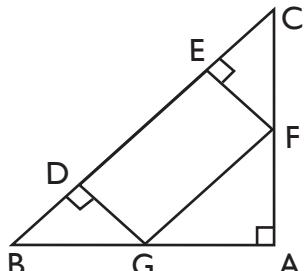
$$\frac{PS}{QS} = \frac{PT}{TR} \Rightarrow \frac{PS}{PQ} = \frac{PT}{PR}$$

Also, $\angle P = \angle P$ (Common)

$\therefore \triangle PST \sim \triangle PQR$
(SAS similarity criterion)

Section D

28.



In $\triangle AFG$ and $\triangle DBG$,

$$\angle AGF = \angle DBG$$

(Corresponding angles as $GF \parallel BC$)

$$\angle GAF = \angle BDG = 90^\circ \quad (\because DEFG \text{ is a square})$$

$\therefore \triangle AFG \sim \triangle DBG$ (i)

(AA similarity criterion)

In $\triangle AGF$ and $\triangle EFC$,

$$\angle AGF = \angle CEF = 90^\circ$$

$$\angle AFG = \angle ECF$$

(Corresponding angles as $GF \parallel BC$)

$\therefore \triangle AGF \sim \triangle EFC$ (ii)

(AA similarity criterion)

From (i), (ii), we get

$$\triangle DBG \sim \triangle EFC$$

$$\Rightarrow \frac{BD}{EF} = \frac{DG}{EC}$$

[Corresponding sides of similar triangles are proportional]

$$\Rightarrow \frac{BD}{DE} = \frac{DG}{EC}$$

[As $DEFG$ is a square, $EF = DE$ and $DG = DE$]

$$\Rightarrow DE^2 = BD \times EC$$

29. In $\triangle AOD$, MO bisects $\angle AOD$,
So, by interior angle bisector theorem,

$$\frac{AO}{OD} = \frac{AM}{DM} \quad (\text{i})$$

In $\triangle BOC$, NO bisects $\angle BOC$

So, by interior angle bisector theorem,

$$\frac{BO}{CO} = \frac{BN}{CN}$$

$$\Rightarrow \frac{CO}{BO} = \frac{CN}{BN} \quad (\text{ii})$$

$$\text{We know that } AO = OD \Rightarrow \frac{AO}{OD} = 1$$

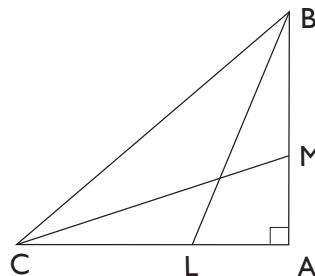
$$\text{and } CO = BO \Rightarrow \frac{CO}{BO} = 1$$

(Radii of same circle)

So, From (i) and (ii), we get

$$\frac{AM}{DM} = \frac{CN}{BN}$$

30.



$$\text{In } \triangle ABC, BC^2 = AB^2 + AC^2$$

(By Pythagoras theorem)

$$\text{In } \triangle ABL, BL^2 = AB^2 = AL^2$$

$$= AB^2 + \left(\frac{1}{2} AC \right)^2$$

$$[\text{As } L \text{ is a midpoint of } AC \therefore AL = \frac{1}{2} AC]$$

$$BL^2 = AB^2 + \frac{AC^2}{4}$$

$$4BL^2 = 4AB^2 + AC^2 \quad (\text{i})$$

$$\text{In } \triangle CMA, CM^2 = AC^2 + AM^2$$

$$= AC^2 + \left(\frac{1}{2} AB \right)^2$$

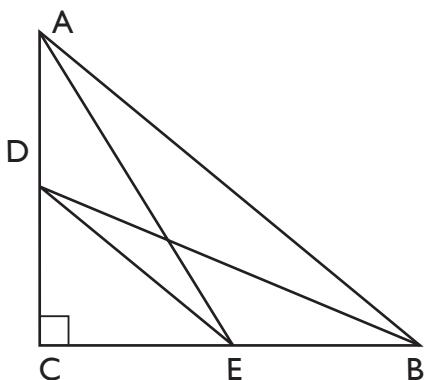
$$= AC + \frac{AB^2}{4}$$

[As M is a midpoint of AB $\therefore AM = \frac{1}{2}AB$]
 $\Rightarrow 4 CM^2 = 4AC^2 + AB^2 \quad (\text{ii})$

From (i), (ii), we get

$$4(BL^2 + CM^2) = 5AB^2 + 5AC^2 \\ = 5BC^2$$

31.



To prove : $AE^2 + BD^2 = AB^2 + DE^2$

Proof In $\triangle ACE$, $AE^2 = AC^2 + CE^2 \quad (\text{i})$

(By Pythagoras theorem)

In $\triangle DCB$, $BD^2 = DC^2 + BC^2 \quad (\text{ii})$

(By Pythagoras theorem)

In $\triangle ABC$, $AB^2 = AC^2 + BC^2 \quad (\text{iii})$

(By Pythagoras theorem)

In $\triangle DCE$, $DE^2 = DC^2 + CE^2 \quad (\text{iv})$

(By Pythagoras theorem)

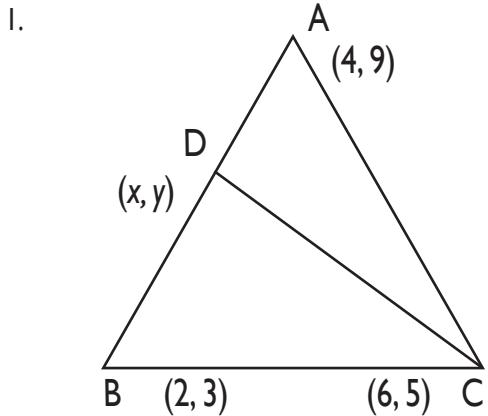
Consider $AE^2 + BD^2$

$= AC^2 + CE^2 + DC^2 + BC^2 \quad (\text{By (1) and (2)})$

$= (AC^2 + BC^2) + (CE^2 + DC^2)$

$= AB^2 + DE^2 \quad (\text{By (3),(4)})$

MULTIPLE CHOICE QUESTIONS



$$D(x, y) = \left(\frac{4+2}{2}, \frac{9+3}{2} \right) = (3, 6)$$

$$\begin{aligned} \text{So, } CD &= \sqrt{(6-3)^2 + (5-6)^2} \\ &= \sqrt{9+1} \\ &= \sqrt{10} \text{ units} \end{aligned}$$

Option (b)

2. As A, B and C are collinear

$$\begin{aligned} \therefore x(-4+5) - 3(-5-2) + 7(2+4) &= 0 \\ x + 21 + 42 &= 0 \\ x &= -63 \end{aligned}$$

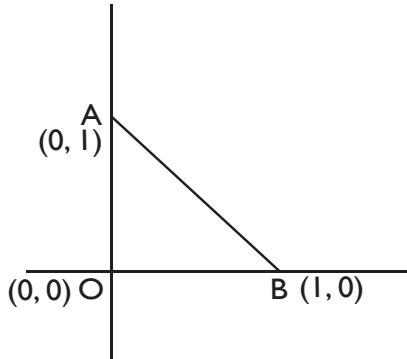
Option (c)

$$\begin{aligned} 3. (2, p) &= \left(\frac{6-2}{2}, \frac{-5+11}{2} \right) \\ &= (2, 3) \end{aligned}$$

$$\Rightarrow p = 3$$

Option (b)

4.



In DAOB,

$$AB^2 = AO^2 + OB^2$$

$$= 1^2 + 1^2$$

$$AB = \sqrt{2}$$

$$\text{Perimeter} = AO + OB + AB$$

$$= 1 + 1 + \sqrt{2}$$

Option (d)

WORKSHEET 1

Section A

1. Centroid = $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)$

$$(1, 4) = \left(\frac{4-9+x_3}{3}, \frac{-3+7+y_3}{3} \right)$$

$$(1, 4) = \left(\frac{-5+x_3}{3}, \frac{4+y_3}{3} \right)$$

$$\frac{-5+x_3}{3} = 1$$

$$\frac{4+y_3}{3} = 4$$

$$x_3 - 5 = 3$$

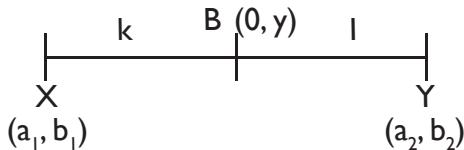
$$y_3 + 4 = 12$$

$$x_3 = 8$$

$$y_3 = 8$$

So, third vertex is (8, 8)

2.



Let the ratio be $k : l$

$$\text{So, } (0, y) = \left(\frac{ka_2 + a_1}{k+l}, \frac{kb_2 + b_1}{k+l} \right)$$

$$\frac{ka_2 + a_1}{k+l} = 0$$

$$ka_2 + a_1 = 0$$

$$ka_2 = -a_1$$

$$k = \frac{-a_1}{a_2}$$

$$\begin{aligned} \text{3. Distance} &= \sqrt{\left(\frac{2}{5} + \frac{8}{5}\right)^2 + (2-2)^2} \\ &= \sqrt{\left(\frac{2}{5} + \frac{8}{5}\right)^2 + 0} \\ &= \sqrt{\left(\frac{2+8}{5}\right)^2} \\ &= 2 \text{ sq. units} \end{aligned}$$

4. Let Point on y - axis be $(0, y)$.

$$\sqrt{(6-0)^2 + (5-y)^2} = \sqrt{(-4-0)^2 + (3-y)^2}$$

$$\sqrt{36 + 25 + y^2 - 10y} = \sqrt{16 + 9 + y^2 - 6y}$$

$$\sqrt{61 + y^2 - 10y} = \sqrt{25 + y^2 - 6y}$$

$$61 + y^2 - 10y = 25 + y^2 - 6y$$

$$36 = 4y$$

$$y = 9$$

So, point on y - axis which is equidistant from point A (6, 5) and B (-4, 3) is (0, 9)

5. As point A (0, 2) is equidistant from the points B (3, P) and C (P, 5), So,

$$\sqrt{(3-0)^2 + (P-2)^2} = \sqrt{(P-0)^2 + (5-2)^2}$$

$$\sqrt{9 + (P-2)^2} = \sqrt{P^2 + 9}$$

$$(P-2)^2 = P^2$$

$$P^2 + 4 - 4P = P^2$$

$$4P = 4$$

$$P = 1$$

$$6. \sqrt{(4-1)^2 + (K-0)^2} = 5$$

$$\sqrt{3^2 + K^2} = 5$$

On Squarring both sides, we get

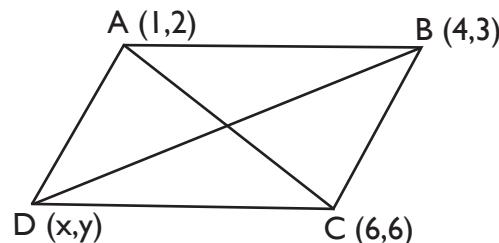
$$9 + K^2 = 25$$

$$K^2 = 25 - 9 = 16$$

$$K^2 = 16$$

$$K = \pm 4$$

7.



We know that diagonals of a parallelogram bisect each other

$$\therefore \left(\frac{1+6}{2}, \frac{2+6}{2} \right) = \left(\frac{4+x}{2}, \frac{3+y}{2} \right)$$

$$\left(\frac{7}{2}, 4 \right) = \left(\frac{4+x}{2}, \frac{3+y}{2} \right)$$

$$\therefore \frac{7}{2} = \frac{4+x}{2} \text{ and } 4 = \frac{3+y}{2}$$

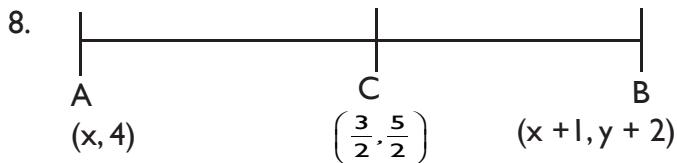
$$7 = 4 + x \text{ and } 8 = 3 + y$$

$$x = 3 \text{ and } y = 5$$

So, coordinates of fourth vertex

$$= (x, y)$$

$$= (3, 5)$$



As C is a midpoint of AB,

$$\left(\frac{x+x+1}{2}, \frac{4+y+2}{2} \right) = \left(\frac{3}{2}, \frac{5}{2} \right)$$

$$\left(\frac{2x+1}{2}, \frac{y+6}{2} \right) = \left(\frac{3}{2}, \frac{5}{2} \right)$$

$$\therefore \frac{2x+1}{2} = \frac{3}{2} \text{ and } \frac{y+6}{2} = \frac{5}{2}$$

$$2x+1 = 3 \text{ and } y+6 = 5$$

$$2x = 2 \text{ and } y = 5 - 6$$

$$x = 1 \text{ and } y = -1$$

Section B

9. Let y - coordinate by v

$$\therefore x - \text{coordinate} = 2v$$

So, point P is $(2v, v)$

$$PQ = PR$$

$$\sqrt{(2-2v)^2 + (-5-v)^2} = \sqrt{(3-2v)^2 + (6-v)^2}$$

On squaring both sides, we get

$$(2-2v)^2 + (-5-v)^2 = (-3-2v)^2 + (6-v)^2$$

$$\therefore 4 + 4v^2 - 8v + 25 + v^2 + 10v$$

$$= 9 + 4v^2 = 12v + 36 + v^2 - 12v$$

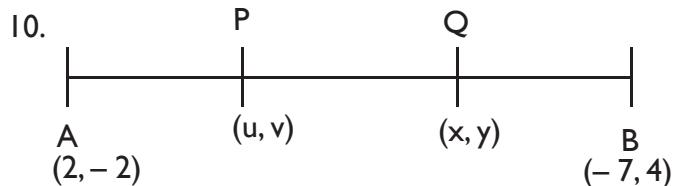
$$\Rightarrow 5v^2 + 2v + 29 = 5v^2 + 45$$

$$\Rightarrow 2v = 45 - 29$$

$$2v = 16$$

$$v = 8$$

So, Point P is $(2v, v)$ i.e. $(16, 8)$



Point P divides AB in ratio 1:2

$$\text{So, } P(u, v) = \left(\frac{1(-7) + 2(2)}{3}, \frac{1(4) + 2(-2)}{3} \right)$$

$$= \left(\frac{-7 + 4}{3}, \frac{4 - 4}{3} \right)$$

$$= (-1, 0)$$

Point Q divides AB in ratio 2:1

$$\text{So, } Q(x, y) = \left(\frac{2(-7) + 1(2)}{3}, \frac{2(4) + 1(-2)}{3} \right)$$

$$= \left(\frac{-14 + 2}{3}, \frac{8 - 2}{3} \right)$$

$$= \left(\frac{-12}{3}, \frac{6}{3} \right)$$

$$= (-4, 2)$$

11. Let A(3, 0), B(6, 4) and C(-1, 3) be the given points

$$AB = \sqrt{(6-3)^2 + (4-0)^2}$$

$$\Rightarrow AB = \sqrt{(3)^2 + (4)^2}$$

$$\Rightarrow AB = \sqrt{9+16}$$

$$\Rightarrow AB = \sqrt{25}$$

$$BC = \sqrt{(-1-6)^2 + (3-4)^2}$$

$$\Rightarrow BC = \sqrt{(-7)^2 + (-1)^2}$$

$$\Rightarrow BC = \sqrt{49+1}$$

$$\Rightarrow BC = \sqrt{50}$$

$$AC = \sqrt{(-1-3)^2 + (3-0)^2}$$

$$\Rightarrow AC = \sqrt{(-4)^2 + (3)^2}$$

$$\Rightarrow AC = \sqrt{16 + 9}$$

$$\Rightarrow AC = \sqrt{25}$$

$$\Rightarrow AB^2 = (\sqrt{25})^2$$

$$\Rightarrow AB^2 = 25$$

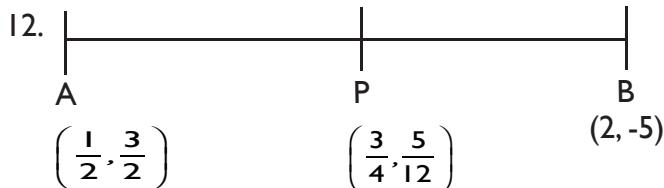
$$\Rightarrow AC^2 = 25$$

$$\Rightarrow BC^2 = (\sqrt{50})^2$$

$$\Rightarrow BC^2 = 50$$

Since $AB^2 + AC^2 = BC^2$ and $AB = AC$

\therefore ABC is a right angled isosceles triangle.



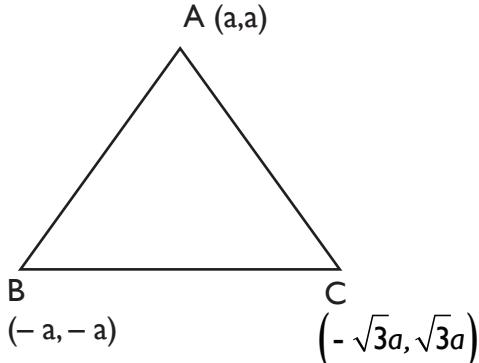
Let point P divides AB in ratio k : l

$$\text{So, } \left(\frac{3}{4}, \frac{5}{12} \right) = \left(\frac{2k + \frac{l}{2}}{k+l}, \frac{-5k + \frac{3}{2}}{k+l} \right)$$

$$\begin{aligned} \frac{3}{4} &= \frac{2k + \frac{l}{2}}{k+l} & \frac{5}{12} &= \frac{-5k + \frac{3}{2}}{k+l} \\ \Rightarrow 3k + 3 &= 8k + 2 & 5k + 5 &= -60k + 18 \\ \Rightarrow l &= 5k & 65k &= 13 \\ k &= \frac{l}{5} & k &= \frac{1}{5} \end{aligned}$$

So, point P divides AB in ratio 1 : 5

13.



$$AB = \sqrt{(-a - a)^2 + (-a - a)^2}$$

$$= \sqrt{4a^2 + 4a^2}$$

$$= \sqrt{8a^2}$$

$$= 2\sqrt{2}a \text{ Units}$$

$$BC = \sqrt{(-\sqrt{3}a + a)^2 + (\sqrt{3}a + a)^2}$$

$$= \sqrt{3a^2 + a^2 - 2\sqrt{3}a^2 + 3a^2 + 2\sqrt{3}a^2}$$

$$= \sqrt{8a^2}$$

$$= 2\sqrt{2}a$$

$$AC = \sqrt{(-\sqrt{3}a - a)^2 + (\sqrt{3}a - a)^2}$$

$$= \sqrt{3a^2 + a^2 + 2\sqrt{3}a^2 + 3a^2 + a^2 - 2\sqrt{3}a^2}$$

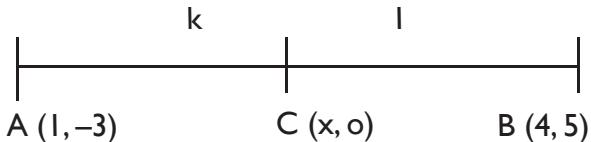
$$= \sqrt{3a^2 + a^2 + 3a^2 + a^2}$$

$$= \sqrt{8a^2}$$

$$= 2\sqrt{2}a$$

As $AB = AC$, $\triangle ABC$ is an equilateral triangle.

14.



Let point C (x, o) divides AB in ratio k : l

So,

$$(x, o) = \left(\frac{4k + l}{k + l}, \frac{5k - 3}{k + l} \right)$$

$$\therefore \frac{5k - 3}{k + l} = 0$$

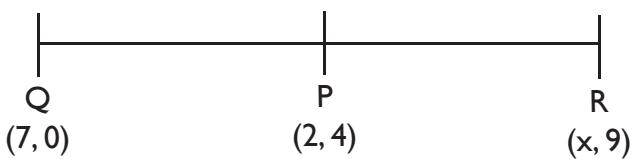
$$5k - 3 = 0$$

$$k = \frac{3}{5}$$

So, x - axis divides the line segment joining point (1, -3) and (4, 5) in ratio 3 : 5

$$\begin{aligned}
 15. \quad \sqrt{(9-x)^2 + (10-4)^2} &= 10 \\
 81 + x^2 - 18x + 36 &= 100 \\
 x^2 - 18x + 17 &= 0 \\
 x^2 - 17x - x + 17 &= 0 \\
 x(x-17) - 1(x-17) &= 0 \\
 (x-1)(x-17) &= 0 \\
 x &= 1, 17
 \end{aligned}$$

16.



$$PQ = PR$$

$$\begin{aligned}
 \Rightarrow \sqrt{(2-7)^2 + (4-2)^2} &= \sqrt{(x-2)^2 + (9-4)^2} \\
 \Rightarrow \sqrt{25+16} &= \sqrt{x^2 + 4 - 4x + 25} \\
 \Rightarrow \sqrt{41} &= \sqrt{x^2 - 4x + 29}
 \end{aligned}$$

On squaring both sides, we get

$$41 = x^2 - 4x + 29$$

$$0 = x^2 - 4x - 12$$

$$0 = x^2 - 6x + 2x - 12$$

$$0 = x(x-6) + 2(x-6)$$

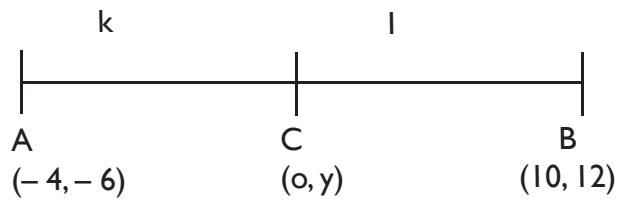
$$0 = (x+2)(x-6)$$

$$x = -2 \text{ or } 6$$

$$\begin{aligned}
 PQ &= \sqrt{(7-2)^2 + (0-4)^2} \\
 &= \sqrt{5^2 + (-4)^2} \\
 &= \sqrt{25+16} \\
 &= \sqrt{41}
 \end{aligned}$$

Section C

17. Let y – axis divides the line segment joining the points $(-4, -6)$ and $(10, 12)$ in ratio $k : l$
 Point on y – axis must be of form $(0, y)$



$$(0, y) = \left(\frac{10k + (-4)}{k+l}, \frac{12k - 6}{k+l} \right)$$

$$(0, y) = \left(\frac{10k - 4}{k+l}, \frac{12k - 6}{k+l} \right)$$

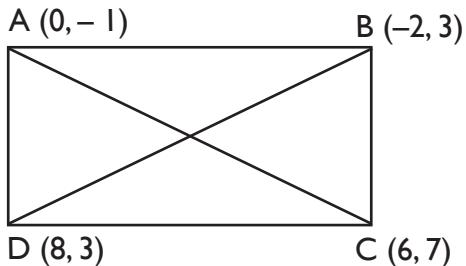
$$\Rightarrow \frac{10k - 4}{k+l} = 0$$

$$\Rightarrow 10k = 4$$

$$k = \frac{2}{5}$$

So, ratio is $2 : 5$

18.



$$\begin{aligned}
 AB &= \sqrt{(-2-0)^2 + (3+1)^2} \\
 &= \sqrt{4+16} \\
 &= \sqrt{20} \\
 &= 2\sqrt{5} \text{ Unit}
 \end{aligned}$$

$$\begin{aligned}
 CD &= \sqrt{(-8-0)^2 + (3+1)^2} \\
 &= \sqrt{4+16} \\
 &= \sqrt{20} \\
 &= 2\sqrt{5} \text{ Unit}
 \end{aligned}$$

$$\therefore AB = CD$$

$$\begin{aligned}
 AD &= \sqrt{(-8-0)^2 + (3+1)^2} \\
 &= \sqrt{64+16} = \sqrt{80} = 4\sqrt{5} \text{ Units}
 \end{aligned}$$

$$\begin{aligned}
 BC &= \sqrt{(6+2)^2 + (7-3)^2} \\
 &= \sqrt{64+16} \\
 &= \sqrt{80} \\
 &= 4\sqrt{5} \text{ Units}
 \end{aligned}$$

$$\therefore AD = BC$$

As $AB = CD$ and $AD = BC$,
So, $ABCD$ is a parallelogram

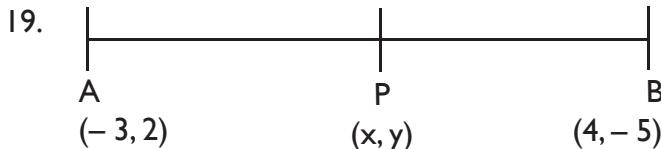
$$\begin{aligned}
 AC &= \sqrt{(6-0)^2 + (7+1)^2} \\
 &= \sqrt{36+64} \\
 &= \sqrt{100} \\
 &= 10 \text{ Units}
 \end{aligned}$$

$$\begin{aligned}
 BD &= \sqrt{(8+2)^2 + (3-3)^2} \\
 &= \sqrt{100} \\
 &= 10 \text{ Units}
 \end{aligned}$$

$$\text{So, } AC = BD$$

\therefore $ABCD$ is a parallelogram in which both diagonals are equal.

So, $ABCD$ is a rectangle.



As point P is equidistant from A and B,

$$AP = BP$$

$$\sqrt{(x+3)^2 + (y-2)^2} = \sqrt{(4-x)^2 + (-5-y)^2}$$

On squaring both sides, we get

$$(x+3)^2 + (y-2)^2 = (4-x)^2 + (-5-y)^2$$

$$\begin{aligned}
 &\underline{x^2} + \underline{9} + \underline{6x} + \underline{y^2} + \underline{4} - \underline{4y} \\
 &= 16 + \underline{x^2} - \underline{8x} + 25 + \underline{y^2} + \underline{10y}
 \end{aligned}$$

$$14x - 14y + 13 = 41$$

$$14x - 14y - 28 = 0$$

$$x - y = 2$$

$$\therefore y = x - 2$$

20.



Point P divides AB in ratio 1 : 2

So,

$$P(p, -2) = \left(\frac{1(1) + 2(3)}{3}, \frac{1(2) + 2(-4)}{3} \right)$$

$$P(p, -2) = \left(\frac{7}{3}, -2 \right)$$

$$\therefore p = \frac{7}{3}$$

Point Q divides AB in ratio 2 : 1

So,

$$Q\left(\frac{5}{3}, q\right) = \left(\frac{2(1) + 1(3)}{3}, \frac{2(2) + 1(-4)}{3} \right)$$

$$Q\left(\frac{5}{3}, q\right) = \left(\frac{5}{3}, 0 \right)$$

$$\therefore q = 0$$

21. As the points A (3p + 1, p), B (p + 2, p - 5) and C (p + 1, -p) are collinear,

$$\text{area of } \triangle ABC = 0$$

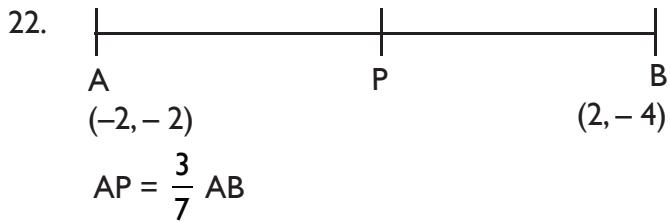
$$\text{i.e. } \frac{1}{2} [(3p+1)(p-5+p) + (p+2)(-p-p) + (p+1)(p-p+5)] = 0$$

$$\Rightarrow [(3p+1)(2p-5) - 2p(p+2) + 5(p+1)] = 0$$

$$\Rightarrow [6p^2 - 15p + 2p - 5 - 2p^2 - 4p + 5p + 5] = 0$$

$$\Rightarrow [4p^2 - 12p] = 0$$

$$p = 0, 3$$



$$\Rightarrow AP = \frac{3}{7} (AP + BP)$$

$$\Rightarrow 7AP = 3AP + 3BP$$

$$\Rightarrow 4AP = 3BP$$

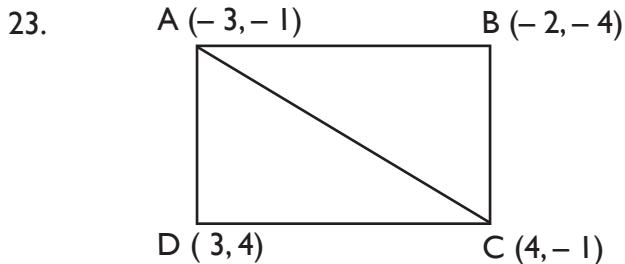
$$\Rightarrow \frac{AP}{PB} = \frac{3}{4}$$

Let point P be (x, y) , using section formula,

$$(x, y) = \left(\frac{3(2) + 4(-2)}{7}, \frac{3(-4) + 4(-2)}{7} \right)$$

$$= \left(\frac{6 - 8}{7}, \frac{-12 - 8}{7} \right)$$

$$= \left(\frac{-2}{7}, \frac{-20}{7} \right)$$



Join AC

Area of $\triangle ACD$

$$= \frac{1}{2} [-3(-1 - 4) + 4(4 + 1) + 3(-1 + 1)]$$

$$= \frac{1}{2} [-3(-5) + 20]$$

$$= \frac{1}{2} [15 + 20]$$

$$= \frac{35}{2} \text{ sq. Units}$$

Area of $\triangle ACD$

$$= \frac{1}{2} [(-3)(-4 - 1) - 2(-1 + 1) + 4(-1 + 4)]$$

$$= \frac{1}{2} [-3(-3) - 2(0) + 4(3)]$$

$$= \frac{1}{2} [9 + 12] = \frac{21}{2} \text{ sq. Units}$$

So, area of quadrilateral ABCD

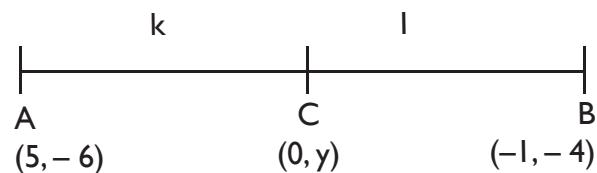
= area of $\triangle ACD$ + area of $\triangle ABC$

$$= \frac{35}{2} + \frac{21}{2}$$

$$= \frac{56}{2}$$

$$= 28 \text{ sq. Units}$$

24. Let y - axis divides the line segment joining points A $(5, -6)$, B $(-1, -4)$ in ratio $k : 1$.
Point on y - axis is of from $(0, y)$.



By section formula,

$$(0, y) = \left(\frac{-k + 5}{k + 1}, \frac{-4k - 6}{k + 1} \right)$$

$$0 = \frac{-k + 5}{k + 1}$$

$$k = 5$$

So, y - axis divides AB in ratio $5 : 1$

$$\text{Also, } y = \frac{-4k - 6}{k + 1}$$

$$= \frac{-20 - 6}{5 + 1}$$

$$= \frac{-26}{6}$$

$$= \frac{-13}{3}$$

$$\text{So, } C(0, y) = (0, \frac{-13}{3})$$

Section D

25. Consider points $(x_1, y_1) = (t, t - 2)$

$$(x_2, y_2) = (t + 2, t - 2)$$

$$= (x_3, y_3) = (t + 3, t)$$

Area of triangle

$$= \frac{1}{2} [x_1(y_2, y_3) + x_2(y_3, y_1) + x_3(y_1, -y_2)]$$

$$= \frac{1}{2} [t(t - 2 - t) + (t + 2)(t - t + 2) + (t + 3)(t - 2 - t + 2)]$$

$$= \frac{1}{2} [t(-2) + (t + 2)(2)]$$

$$= \frac{1}{2} [-2t + 2t + 4]$$

$$= \frac{1}{2} (4)$$

= 2 sq. Units

So, area of triangle is independent of t.

$$26. \quad \frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{3}$$

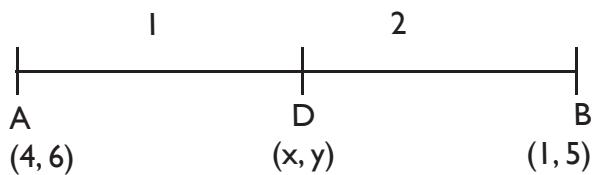
$$\Rightarrow \frac{AD}{AB} = \frac{AC}{AE} = \frac{3}{1}$$

$$\Rightarrow \frac{AD}{AB} - 1 = \frac{AC}{AE} - 1 = 3 - 1$$

$$\Rightarrow \frac{BD}{AD} = \frac{CE}{AE} = 2$$

$$\therefore \frac{AD}{BD} = \frac{AE}{CE} = \frac{1}{2}$$

For coordinates of D



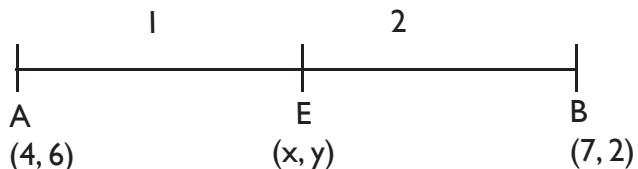
By section formula,

$$(x, y) = \left(\frac{1(1) + 2(4)}{3}, \frac{1(5) + 2(6)}{3} \right)$$

$$(x, y) = \left(\frac{9}{3}, \frac{17}{3} \right)$$

$$= \left(3, \frac{17}{3} \right)$$

For coordinates of E

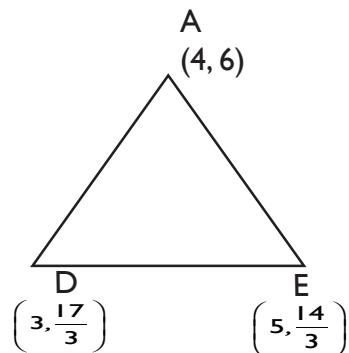


By section formula,

$$(x, y) = \left(\frac{1(7) + 2(4)}{3}, \frac{1(2) + 2(6)}{3} \right)$$

$$= \left(\frac{7 + 8}{3}, \frac{2 + 12}{3} \right)$$

$$= \left(5, \frac{14}{3} \right)$$



ar $\triangle ADE$

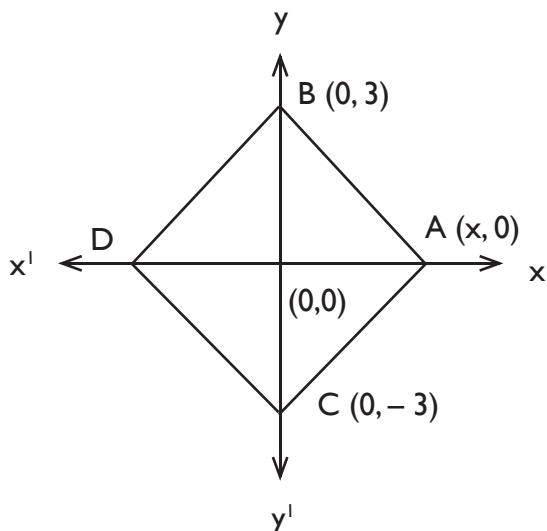
$$= \frac{1}{2} [4 \left(\frac{17}{3}, \frac{14}{3} \right) + 3 \left(\frac{14}{3}, -6 \right) + 5 \left(6 - \frac{17}{3} \right)]$$

$$= \frac{1}{2} [4 \left(\frac{3}{3} \right) + 3 \left(\frac{14 - 18}{3} \right) + 5 \left(\frac{18 - 17}{3} \right)]$$

$$= \frac{1}{2} [4 + (-4) + \frac{5}{3}]$$

$$= \frac{5}{6} \text{ sq. Units}$$

27.



Let coordinates of B be $(0, y)$

As $(0, 0)$ is a Midpoint of BC

$$\therefore (0, 0) = \left(\frac{0+0}{2}, \frac{y-3}{2} \right)$$

$$(0, 0) = \left(\frac{0}{2}, \frac{y-3}{2} \right)$$

$$(0, 0) = \left(0, \frac{y-3}{2} \right)$$

$$\frac{y-3}{2} = 0$$

$$y = 3$$

So, point B is $(0, 3)$

Let coordinates of point A be $(x, 0)$

Using distance formula,

$$AB = \sqrt{(x-0)^2 + (0-3)^2}$$

$$= \sqrt{x^2 + 9}$$

$$BC = \sqrt{(0-0)^2 + (-3-3)^2}$$

$$= \sqrt{36}$$

$$= 6$$

As $\triangle ABC$ is equilateral,

$$AB = BC$$

$$\text{i.e. } \sqrt{x^2 + 9} = 6$$

$$x^2 + 9 = 36$$

$$x^2 = 27$$

$$x = \pm 3\sqrt{3}$$

\therefore Coordinates of point A are $(3\sqrt{3}, 0)$

As BACD is a rhombus and diagonals of rhombus bisect each other. So, $OD = OA = 3\sqrt{3}$ units

\therefore Point D is $(-3\sqrt{3}, 0)$

28. Area of triangle = 5 sq. units

As third vertex lies on $y = x + 3$,

So, it must be of form $(x, x + 3)$

$$\text{Let } (x_1, y_1) = (2, 1)$$

$$(x_2, y_2) = (3, -2)$$

$$(x_3, y_3) = (x, x + 3)$$

Area of triangle

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$5 = \frac{1}{2} [2(-2 - x - 3) + (x + 3 - 1) + x(1 + 2)]$$

$$10 = [2(-5 - x) + 3(x + 2) + 3x]$$

$$10 = [-10x + 3x + 6 + 3x]$$

$$10 = [4x - 4]$$

$$\therefore \pm 10 = 4x - 4$$

$$4x - 4 = 10$$

$$4x = 10$$

$$x = \frac{7}{2}$$

So, third vertex is

$$(x, x + 3)$$

$$= \left(\frac{7}{2}, \frac{7}{2} + 3 \right)$$

$$= \left(\frac{7}{2}, \frac{13}{2} \right)$$

$$4x - 4 = -10$$

$$4x = -6$$

$$x = \frac{-3}{2}$$

So, third vertex is

$$(x, x + 3)$$

$$= \left(\frac{-3}{2}, \frac{-3}{2} + 3 \right)$$

$$= \left(\frac{-3}{2}, \frac{3}{2} \right)$$

29. Let $(x_1, y_1) = (a, a^2)$

$$(x_2, y_2) = (b, b^2)$$

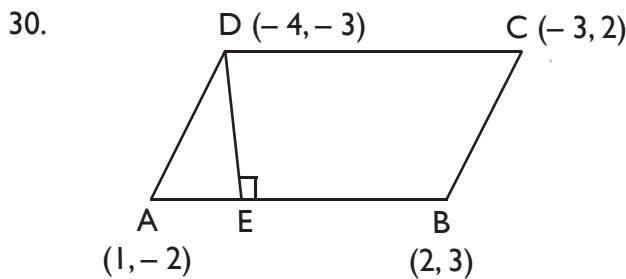
$$(x_3, y_3) = (c, c^2)$$

Consider Area of triangle

$$\begin{aligned}
 &= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \\
 &= \frac{1}{2} [a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)] \\
 &= \frac{1}{2} [ab^2 - ac^2 + bc^2 - a^2b + a^2c - b^2c] \\
 &= \frac{1}{2} [ab(b - a) + ac(a - c) + bc(c - b)]
 \end{aligned}$$

Here, it is clear that area of triangle is 0 if $a = b = c$

but it is given that $a \neq b \neq c$



Let be the height of parallelogram ABCD.

For $\triangle ABD$,

$$\begin{aligned}
 \text{Let } (x_1, y_1) &= (1, -2) \\
 (x_2, y_2) &= (2, 3) \\
 (x_3, y_3) &= (-4, -3)
 \end{aligned}$$

area of $\triangle ABD$

$$\begin{aligned}
 &= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \\
 &= \frac{1}{2} [1(3 + 3) + 2(-3 + 2) - 4(-2 - 3)] \\
 &= \frac{1}{2} [6 - 2 + 20] \\
 &= 12 \text{ sq. units}
 \end{aligned}$$

For $\triangle BCD$,

$$\begin{aligned}
 \text{Let } (x_1, y_1) &= (2, 3) \\
 (x_2, y_2) &= (-3, 2) \\
 (x_3, y_3) &= (-4, -3)
 \end{aligned}$$

area of $\triangle BCD$

$$\begin{aligned}
 &= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \\
 &= \frac{1}{2} [2(2 + 3) + -3(-3 - 3) - 4(3 - 2)] \\
 &= \frac{1}{2} [10 + 18 - 4] \\
 &= 12 \text{ sq. units}
 \end{aligned}$$

Area of parallelogram ABCD

$$\begin{aligned}
 &= \text{area of } \triangle ABC + \text{area of } \triangle BCD \\
 &= 12 + 12 \\
 &= 24 \text{ sq. units}
 \end{aligned}$$

We know that area of parallelogram

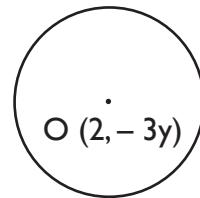
$$= \text{base} \times \text{height}$$

$$24 = AB \times \text{height}$$

By Distance formula,

$$\begin{aligned}
 AB &= \sqrt{(2-1)^2 + (3+2)^2} \\
 &= \sqrt{1+25} \\
 &= \sqrt{26} \text{ units} \\
 \therefore 24 &= \sqrt{26} \times \text{height} \\
 \text{height} &= \frac{24}{\sqrt{26}} \text{ units} = \frac{12}{13} \sqrt{26} \text{ units}
 \end{aligned}$$

31.



Let the center be $O(2, -3y)$

As points A and B lie on a circle,

$$AO = BO$$

$$\begin{aligned}
 \sqrt{(2+1)^2 + (-3y-y)^2} &= \sqrt{(2-5)^2 + (-3y-7)^2} \\
 \sqrt{9+16y^2} &= \sqrt{9+9y^2+49+42y}
 \end{aligned}$$

On squarraig both sides, we get

$$9 + 16y^2 = 9y^2 + 42y + 58$$

$$7y^2 - 42y - 49 = 0$$

$$y^2 - 6y - 7 = 0$$

$$y^2 - 7y + y - 7 = 0$$

$$y(y-7) + (y-7) = 0$$

$$(y+1)(y-7) = 0$$

$$y = -1, 7$$

When $y = 1$

$$A = (-1, y) = (-1, -1)$$

$$O = (2, 3)$$

So,

$$\text{radius} = AO$$

$$= \sqrt{(2+1)^2 + (3+1)^2}$$

$$= \sqrt{9+16}$$

$$= \sqrt{25}$$

$$= 5 \text{ units}$$

When $y = 7$

$$A = (-1, y)$$

$$= (-1, 7)$$

$$O = (2, -3y)$$

$$= (2, -21)$$

So,

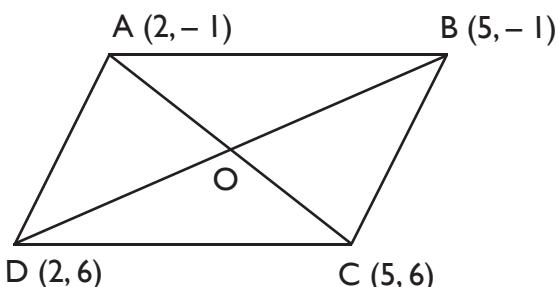
$$\text{ratio} = AO$$

$$= \sqrt{(2+1)^2 + (-2-7)^2}$$

$$= \sqrt{9+784}$$

$$= \sqrt{793} \text{ units}$$

32.



By distance formula,

$$\begin{aligned} AC &= \sqrt{(5-2)^2 + (6+1)^2} \\ &= \sqrt{9+49} = \sqrt{58} \text{ units} \end{aligned}$$

$$\begin{aligned} BD &= \sqrt{(2-5)^2 + (6+1)^2} \\ &= \sqrt{9+49} \\ &= \sqrt{58} \end{aligned}$$

So, $AC = BD$

Also, By Midpoint formula,

$$\text{Midpoint of } AC = \left(\frac{2+5}{2}, \frac{-1+6}{2} \right)$$

$$= \left(\frac{7}{2}, \frac{5}{2} \right)$$

$$\text{Midpoint of } BD = \left(\frac{5+2}{2}, \frac{-1+6}{2} \right)$$

$$= \left(\frac{7}{2}, \frac{5}{2} \right)$$

So, Midpoint of $AC = \text{Midpoint of } BD$.

So, AC and BD bisects each other.

WORKSHEET 2

Section A

I. Let $P(x, y)$ be the point equidistant from the point $A(5, 1)$, $B(-3, -7)$ and $C(7, -1)$

$$\therefore PA = PB = PC$$

$$PA = PB$$

$$\Rightarrow \sqrt{(5-x)^2 + (1-y)^2}$$

$$= \sqrt{(-3-x)^2 + (-7-y)^2}$$

$$\Rightarrow \sqrt{25+x^2-10x+1+y^2-2y}$$

$$= \sqrt{9+x^2+6x+49+y^2+14y}$$

On squaring both sides we get

$$x^2 + y^2 - 10x - 2y + 26$$

$$= x^2 + y^2 + 6x + 14y + 58$$

$$0 = 16x + 16y + 32$$

$$x + y = -2 \quad \textcircled{1}$$

$$PB = PC$$

$$\Rightarrow \sqrt{(-3-x)^2 + (-7-y)^2}$$

$$= \sqrt{(7-x)^2 + (-1-y)^2}$$

$$\Rightarrow \sqrt{9+x^2+6x+49+y^2+14y}$$

$$= \sqrt{49+x^2+14x+1+y^2+2y}$$

On squaring both sides, we get

$$\begin{aligned}x^2 + y^2 + 6x + 14y + 58 \\= x^2 + y^2 - 14x + 2y + 50\end{aligned}$$

$$20x + 12y + 8 = 0$$

$$5x + 3y = -2 \quad (2)$$

From (1), we get

$$x = -2 - y$$

On putting in (2), we get

$$5(-2 - y) + 3y = -2$$

$$-10 - 5y + 3y = -2$$

$$-2 = 8$$

$$sy = -4$$

$$\text{So, } x = -2 - y$$

$$= -2 + 4$$

$$= 2$$

So, point $(2, -4)$ is equidistant

From point A (5, 1), B (-3, -7) and C (7, -1)

2. Reflexion of $(-3, 4)$ in X-axis (Q) = $(-3, -4)$

Reflexion of $(-3, 4)$ in Y-axis (R) = $(3, 4)$

So, by distance formula,

$$\begin{aligned}QR &= \sqrt{(3+3)^2 + (4+4)^2} \\&= \sqrt{36+64} \\&= \sqrt{100} \\&= 10 \text{ units}\end{aligned}$$

3. As point $(3, a)$ lies on line

$$2x - 3y + 5 = 0$$

$$\therefore 6 - 3a + 5 = 0$$

$$3a = 11$$

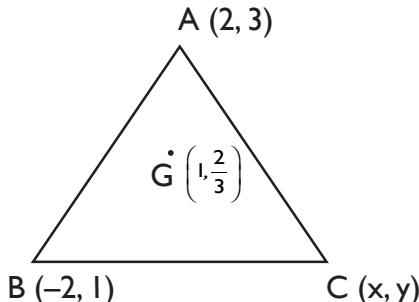
$$a = \frac{11}{3}$$

4. By Distance formula,

$$\text{Distance} = \sqrt{(0+6)^2 + (0-8)^2}$$

$$\begin{aligned}&= \sqrt{(36+64)} \\&= \sqrt{100} \\&= 10 \text{ units}\end{aligned}$$

5.



$$\text{Let } (x_1, y_1) = (2, 3)$$

$$(x_2, y_2) = (-2, 1)$$

$$(x_3, y_3) = (x, y)$$

$$\text{Centroid } (G) = \left(l, \frac{2}{3}\right)$$

We know that

$$\text{Centroid} = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$\left(l, \frac{2}{3}\right) = \left(\frac{-2+2+x}{3}, \frac{1+1+y}{3}\right)$$

$$\left(l, \frac{2}{3}\right) = \left(\frac{x}{3}, \frac{4+y}{3}\right)$$

$$\Rightarrow l = \frac{x}{3} \text{ and } \frac{2}{3} = \frac{4+y}{3}$$

$$\Rightarrow x = 3 \text{ and } y = -2$$

$$6. \text{ Let } (x_1, y_1) = (k, 2k)$$

$$(x_2, y_2) = (3k, 3k)$$

$$(x_3, y_3) = (3, 1)$$

Since the points are collinear, area of triangle is zero

i.e.

$$\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

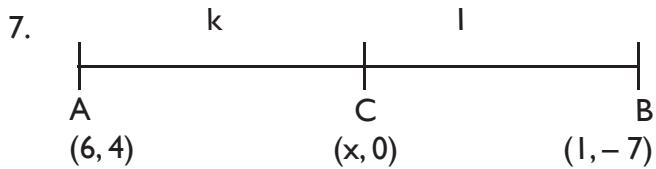
$$[k(3k-1) + 3k(1-2k) + 3(2k-3k)] = 0$$

$$[3k^2 - k + 3k - 6k^2 - 3k] = 0$$

$$[-3k^2 - k] = 0$$

$$k(3k + 1) = 0$$

$$k = \frac{-1}{3}$$



Let the x – axis divides AB in ratio k : l

Point on x – axis must be of form (x, 0), so, by section formula

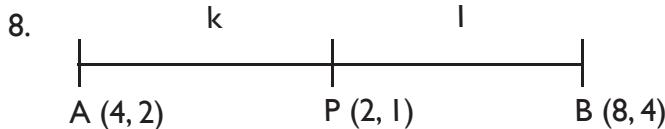
$$(x, 0) = \left(\frac{k+6}{k+l}, \frac{7k+4}{k+l} \right)$$

$$(x, 0) = \left(\frac{6+k}{k+l}, \frac{-7k+4}{k+l} \right)$$

$$\therefore \frac{-7k+4}{k+l} = 0$$

$$k = \frac{4}{7}$$

So, x – axis divides line AB in ratio 4 : 7.



Let AP : PB = k : l

By section formula,

$$P(2, l) = \left(\frac{8k+4}{k+l}, \frac{4k+2}{k+l} \right)$$

$$\therefore 2 = \frac{8k+4}{k+l}, l = \frac{4k+2}{k+l}$$

$$8k + 4 = 2k + 2$$

$$6k = -2$$

$$k = \frac{-2}{6}$$

$$= \frac{-1}{3}$$

$$\therefore \frac{AB}{PB} = \frac{-1}{3}$$

$$\frac{PB}{AP} = -3$$

$$\frac{PB}{AP} + 1 = -3 + 1$$

$$\frac{AP+PB}{AP} = -2$$

$$\frac{AB}{PB} = -2$$

$$\frac{AP}{AB} = \frac{-1}{2}$$

$$AP = \frac{-1}{2} AB$$

9. Consider the two points P(a sin α , -b cos α) and Q (-a cos α , b sin α).

We need to find the distance between P and Q

Let d be the distance PQ.

Thus, by distance formula

$$\begin{aligned} d &= \sqrt{(a \sin \alpha + a \cos \alpha)^2 + (-b \cos \alpha - b \sin \alpha)^2} \\ &= \sqrt{a^2(\sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha) + b^2(\sin^2 \alpha + \cos^2 \alpha - 2 \sin \alpha \cos \alpha)} \\ &= \sqrt{a^2(1 + \sin 2\alpha) + b^2(1 - \sin 2\alpha)} \end{aligned}$$

[$\because \sin^2 \alpha + \cos^2 \alpha = 1$ and $\sin 2\alpha = 2 \sin \alpha \cos \alpha$]

$$\therefore d = \sqrt{(a^2 + b^2)(1 + \sin 2\alpha)}$$

10. We have to write the condition of three points.

If three points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear, then they will not form a triangle.

In other words, the triangle having vertices (x_1, y_1) , (x_2, y_2) and $C(x_3, y_3)$ will have area 0.

The formula to calculate the area of a triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is,

$$A = \frac{1}{2} \begin{vmatrix} x_1 - x_2 & y_1 - y_2 \\ x_2 - x_3 & y_2 - y_3 \end{vmatrix}$$

$$A = \frac{1}{2} |(x_1 - x_2)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_2)|$$

Therefore,

$$\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = 0$$

$$x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$$

Therefore, the condition of collinearity of (x_1, y_1) , (x_2, y_2) and $C(x_3, y_3)$ is

$$x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$$

Section B

11. Let the vertices of triangle be $(x_1, y_1) = (-3, 1)$, $(x_2, y_2) = (0, -2)$ and (x_3, y_3)

Centroid of triangle $(x, y) = (0, 0)$

We Know that

Centroid of triangle

$$(x, y) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)$$

$$\text{i.e. } (0, 0) = \left(\frac{-3 + 0 + x_3}{3}, \frac{1 - 2 + y_3}{3} \right)$$

$$\Rightarrow \frac{-3 + x_3}{3} = 0, \frac{1 - 2 + y_3}{3} = 0$$

$$\Rightarrow x_3 = 3, y_3 = 1$$

So, third vertex is $(x_3, y_3) = (3, 1)$

12. The required ratio would be $k : l$.

The coordinates of the point of divisions will be

$$\left(\frac{3k - 4}{k+1}, \frac{7+5}{k+1} \right)$$

The point which we have identified is on y axis and there the point is zero on x coordinate.

$$\text{So, } \frac{3k - 4}{k+1} = 0$$

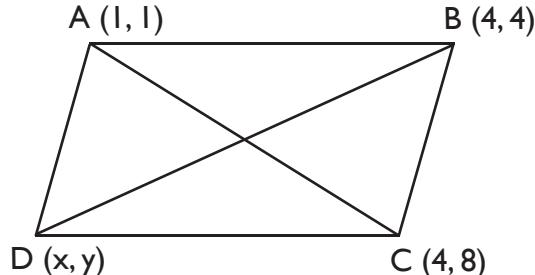
$$3k - 4 = 0$$

$$k = \frac{4}{3}$$

So the required ratio is

$$k = \frac{4}{3} \text{ or } 4 : 3$$

13.



We know that diagonals of parallelogram bisect each other

$$\therefore \left(\frac{1+4}{2}, \frac{1+8}{2} \right) = \left(\frac{x+4}{2}, \frac{y+4}{2} \right)$$

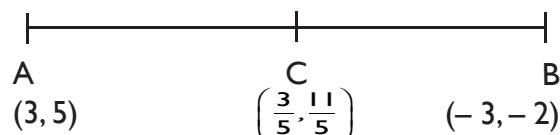
$$(5, 9) = (x+4, y+4)$$

$$x+4=5, y+4=9$$

$$x=1, y=5$$

So, fourth vertex is $(1, 5)$.

14. Let the point $C \left(\frac{3}{5}, \frac{11}{5} \right)$ divide the line segment joining point $A(3, 5)$ and $B(-3, -2)$ in ratio $k : l$.



By section formula,

$$\left(\frac{3}{5}, \frac{11}{5} \right) = \left(\frac{-3k+3}{k+1}, \frac{-2k+5}{k+1} \right)$$

$$\therefore \frac{-3k+3}{k+1} = \frac{3}{5}$$

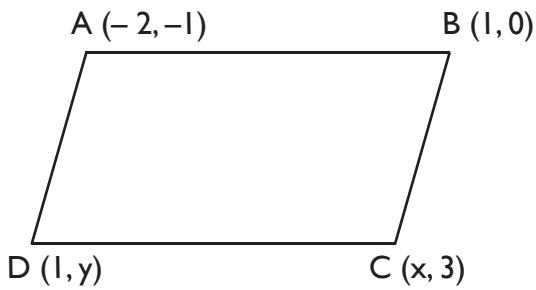
$$5(-3k+3) = 3(k+1)$$

$$-15k + 15 = 3k + 3$$

$$12 = 18k$$

$$k = \frac{2}{3}$$

15.



We know that diagonals of parallelogram bisect each other

$$\therefore \left(\frac{-2k+x}{2}, \frac{-1+3}{2} \right) = \left(\frac{1+1}{2}, \frac{y+0}{2} \right)$$

$$\Rightarrow \left(\frac{-2+x}{2}, 1 \right) = \left(1, \frac{y}{2} \right)$$

$$\therefore \frac{-2+x}{2} = 1, 1 = \frac{y}{2}$$

$$x = 4, y = 2$$

16. Given the vertices of a $\triangle ABC$ are right angled at A.

$$\therefore AB^2 + AC^2 = BC^2$$

$$AB^2 = (-2 - 0)^2 + (a - 3)^2 = 4 + (a - 3)^2$$

$$BC^2 = (-1 + 2)^2 + (4 - a)^2 = 1 + (4 - a)^2$$

$$AC^2 = (-1 - 0)^2 + (4 - 3)^2 = 1 + 1 = 2$$

Since $AB^2 + AC^2 = BC^2$

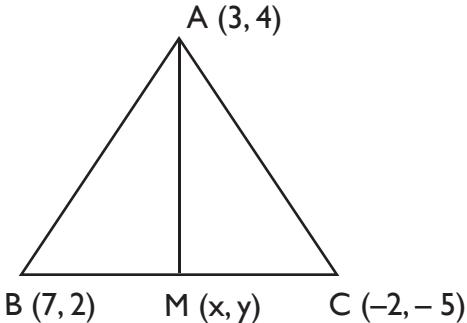
$$4 + (a - 3)^2 + 2 = 1 + (4 - a)^2$$

$$4 + a^2 + 9 - 6a + 2 = 1 + 16 + a^2 - 8a$$

$$2a = 2$$

$$\therefore a = 1.$$

17.



By midpoint formula,

$$\begin{aligned} M(x, y) &= \left(\frac{7-2}{2}, \frac{2-5}{2} \right) \\ &= \left(\frac{5}{2}, \frac{-3}{2} \right) \end{aligned}$$

By Distance formula,

$$\begin{aligned} AM &= \sqrt{\left(\frac{5}{2} - 3 \right)^2 + \left(\frac{-3}{2} - 4 \right)^2} \\ &= \sqrt{\left(\frac{-1}{2} \right)^2 + \left(\frac{-3-8}{2} \right)^2} \\ &= \sqrt{\frac{1}{4} + \frac{121}{4}} \\ &= \sqrt{\frac{121}{4}} = \sqrt{\frac{61}{2}} \end{aligned}$$

18. As point A(x, y) is equidistant from B(6, -1) and C(2, 3)

$$\therefore AB = AC$$

$$\sqrt{(6-x)^2 + (-1-y)^2} = \sqrt{(2-x)^2 + (3-y)^2}$$

On squaring both sides, we get

$$(6-x)^2 + (-1-y)^2 = (2-x)^2 + (3-y)^2$$

$$36 + x^2 - 12x + 1 + y^2 + 2y = 4 + x^2 - 4x + 9 + y^2 - 6y$$

$$\therefore -12x + 2y + 37 = -4x - 6y + 13$$

$$\Rightarrow 0 = 8x - 8y - 24$$

$$\Rightarrow 8x - 8y = 24$$

$$\Rightarrow x - y = 3$$

$$\Rightarrow x = y + 3$$

19. As the points A (2, 1) and B (1, 2) are equidistant from the point C (x, y),

$$BC = AC$$

$$\sqrt{(x-1)^2 + (y+2)^2} = \sqrt{(x-2)^2 + (y-1)^2}$$

On squaring both sides, we get

$$(x-1)^2 + (y+2)^2 = (x-2)^2 + (y-1)^2$$

$$x^2 + 1 - 2x + y^2 + 4 + 4y = x^2 + 4 - 4x + y^2 + 1 - 2y$$

$$-2x + 4y + 5 = -4x - 2y + 5$$

$$2x + 6y = 0$$

$$x + 3y = 0$$

20. Let the vertices of triangle be

$$(x_1, y_1) = (k, 2k)$$

$$(x_2, y_2) = (3k, 3k)$$

$$(x_3, y_3) = (3, 1)$$

Area of triangle

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$= \frac{1}{2} [5(7+4) + 4(-4-2) + 7(2-7)]$$

$$= \frac{1}{2} [5(11) + 4(-6) + 7(-5)]$$

$$= \frac{1}{2} [55 - 24 - 35]$$

$$= \frac{1}{2} [55 - 59]$$

$$= \frac{4}{2} = 2 \text{ sq. units}$$

Section C

21. PA=PB

Take square both side

$$PA^2 = PB^2$$

Now use distance formula,

$$\{x - (a + b)\}^2 + \{y - (b - a)\}^2 = \{x - (a - b)\}^2 + \{y - (a + b)\}^2$$

$$\Rightarrow x^2 + (a + b)^2 - 2x(a + b) + y^2 + (b - a)^2 - 2y(b - a) = x^2 + (a - b)^2 - 2x(a - b) + y^2 + (a + b)^2 - 2y(a + b)$$

$$\Rightarrow 2x(a - b) - 2x(a + b) = 2y(b - a) - 2y(a + b)$$

$$\Rightarrow 2x\{a - b - a - b\} = 2y\{b - a - a - b\}$$

$$\Rightarrow 2x(-2b) = 2y(-2a)$$

$$\Rightarrow bx = ay$$

Hence proved.

22. Any point on the x-axis will be the form A(x, 0). Let this point divides the line segment

Joining (3, -2) and (-7, -1) in the ratio m:n internally.

Thus the coordinate of A is

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right)$$

where (3, -2) and (-7, -1) are (x_1, y_1) and (x_2, y_2) respectively.

Thus the coordinates of

$$A = \frac{(m(-7) + n(3))}{m+n}, \frac{m(-1) + n(-2)}{m+n} = (x, 0)$$

Here the y coordinates of A is Zero.

$$\text{Thus } \left(\frac{-m + (-2n)}{m+n} \right) = 0.$$

Hence $-m - 2n = 0$.

$$\Rightarrow -m = 2n$$

$$\Rightarrow \frac{m}{n} = \frac{2}{-1}.$$

$\Rightarrow m : n = 2 : -1$ internally

Thus $m : n = 2 : 1$ externally.

23.

By mid-point formula,

$$(5, 1) = \left(\frac{8+x}{2}, \frac{4+y}{2} \right)$$

$$5 = \frac{8+x}{2}, 1 = \frac{4+y}{2}$$

$$x+8=10, y+4=2$$

$$x=2, y=-2$$

So, Coordinates of $Q = (x, y)$
 $= (2, -2)$

24. Let points be

$$(x_1, y_1) = (c, a+b)$$

$$(x_2, y_2) = (b, b+c)$$

$$(x_3, y_3) = (a, a+c)$$

Area of triangle

$$\begin{aligned} &= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \\ &= \frac{1}{2} [c(b+c-a-c) + a(a+c-a-b) + b(a+b-b-c)] \\ &= \frac{1}{2} [c(b-a) + a(c-b) + b(a-c)] \\ &= \frac{1}{2} [bc - ac + ac - ab + ab - bc] \\ &= 0 \end{aligned}$$

As area of triangle = 0

So, points A, B and C are collinear.

25. Let the point be

$$(x_1, y_1) = (a, 0)$$

$$(x_2, y_2) = (0, b)$$

$$(x_3, y_3) = (1, 1)$$

Points are collinear, if area of triangle = 0

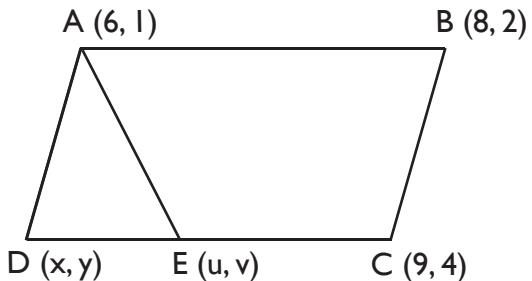
$$\begin{aligned} \text{i.e. } &\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0 \\ \Rightarrow &\frac{1}{2} [a(b-1) + 0(1+0) + 1(0-b)] = 0 \\ \Rightarrow &\frac{1}{2} [ab - a - b] = 0 \\ \Rightarrow &ab - a - b = 0 \end{aligned}$$

$$\Rightarrow ab = a + b$$

$$\Rightarrow 1 = \frac{a}{ab} + \frac{b}{ab}$$

$$\Rightarrow 1 = \frac{1}{a} + \frac{1}{b}$$

26.



We know that diagonals of parallelogram bisect each other.

$$\therefore \text{Midpoint of } AC = \text{midpoint of } BD$$

So, by midpoint formula,

$$\left(\frac{6+9}{2}, \frac{1+4}{2} \right) = \left(\frac{x+8}{2}, \frac{y+2}{2} \right)$$

$$\text{i.e. } \left(\frac{15}{2}, \frac{5}{2} \right) = \left(\frac{x+8}{2}, \frac{y+2}{2} \right)$$

$$\text{i.e. } x+8 = 15, y+2 = 5$$

$$x = 7, y = 3$$

So, point D = (7, 3)

Again, by midpoint formula,

$$\begin{aligned} E(u, v) &= \left(\frac{6+9}{2}, \frac{1+4}{2} \right) \\ &= \left(\frac{7+9}{2}, \frac{3+4}{2} \right) = \left(\frac{16}{2}, \frac{7}{2} \right) \\ &= \left(8, \frac{7}{2} \right) \end{aligned}$$

For area of $\triangle ADE$

$$\text{Let } (x_1, y_1) = (c, a+b)$$

$$(x_2, y_2) = (b, b+c)$$

$$(x_3, y_3) = (a, a+c)$$

area of $\triangle ADE$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$\begin{aligned}
&= \frac{1}{2} [6 \left(3 - \frac{7}{2} \right) + 7 \left(\frac{7}{2} - 1 \right) + 8 (1 - 3)] \\
&= \frac{1}{2} [6 \left(-\frac{1}{2} \right) + 7 \left(\frac{5}{2} \right) + 8 (-2)] \\
&= \frac{1}{2} [-3 + \frac{35}{2} - 16] \\
&= \frac{1}{2} [\frac{35}{2} - 19] \\
&= \frac{1}{2} [\frac{35 - 38}{2}] \\
&= \frac{3}{4}
\end{aligned}$$

27. Given ,

Points = $(p + 1, 2p - 2)$, $(p - 1, p)$ and $(p - 3, 2p - 6)$

For the given points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) to be collinear then

$$[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

Here,

$$x_1 = p + 1 \quad y_1 = 2p - 2$$

$$x_2 = p - 1 \quad y_2 = p$$

$$x_3 = p - 3 \quad y_3 = 2p - 6$$

Substituting the values in the formula ,

$$(p + 1)(p - (2p - 6)) + (p - 1)(2p - 6 - (2p - 2)) + (p - 3)(2p - 2 - (p)) = 0$$

$$(p + 1)(p - 2p + 6) + (p - 1)(2p - 6 - 2p + 2) + (p - 3)(2p - 2 - p) = 0$$

$$(p + 1)(-p + 6) + (p - 1)(-4) + (p - 3)(p - 2) = 0$$

$$-p^2 - p + 6p + 6 - 4p + 4 + p^2 - 3p - 2p + 6 = 0$$

$$-4p + 16 = 0$$

$$4p = 16$$

Dividing both the sides by 4

$$\frac{4p}{4} = \frac{16}{4}$$

$$p = 4$$

Hence,

For the points to be collinear, $p = 4$

28.

A $(2, -1)$ B $(3, 4)$

D $(-3, -2)$ C $(-2, 3)$

By Distance formula,

$$\begin{aligned}
AB &= \sqrt{(3 - 2)^2 + (4 + 1)^2} \\
&= \sqrt{1 + 25} = \sqrt{26}
\end{aligned}$$

$$\begin{aligned}
BC &= \sqrt{(-2 - 3)^2 + (3 - 4)^2} \\
&= \sqrt{25 + 1} = \sqrt{26}
\end{aligned}$$

$$\begin{aligned}
CD &= \sqrt{(-3 + 2)^2 + (-2 - 3)^2} \\
&= \sqrt{1 + 25} \\
&= \sqrt{26}
\end{aligned}$$

$$\begin{aligned}
AD &= \sqrt{(-3 - 2)^2 + (-2 + 1)^2} \\
&= \sqrt{26}
\end{aligned}$$

As $AB = BC = CD = AD$,

ABCD is a rhombus

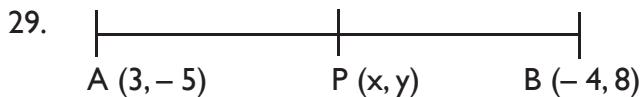
Again, by distance formula,

$$\begin{aligned}
AC &= \sqrt{(-2 - 2)^2 + (3 + 1)^2} \\
&= \sqrt{16 + 16} \\
&= \sqrt{32} \\
&= 4\sqrt{2} \text{ units}
\end{aligned}$$

$$\begin{aligned}
BD &= \sqrt{(-3 - 3)^2 + (-2 - 4)^2} \\
&= \sqrt{(-6)^2 + (-6)^2} \\
&= \sqrt{72} \\
&= 6\sqrt{2} \text{ units}
\end{aligned}$$

$\therefore AC \neq BD$

As diagonals are not equal, ABCD is a rhombus but not a square.



$$\frac{AP}{PB} = \frac{k}{1}$$

Let point P be (x, y) .

By section formula,

$$(x, y) = \left(\frac{-4k+3}{k+1}, \frac{8k-5}{k+1} \right)$$

$$(x, y) = \left(\frac{-4k+3}{k+1}, \frac{8k-5}{k+1} \right)$$

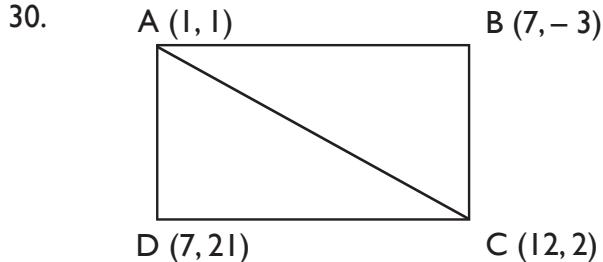
$$\therefore x = \frac{-4k+3}{k+1}, y = \frac{8k-5}{k+1}$$

As point P lies on line $x + y = 0$

$$\therefore \left(\frac{-4k+3}{k+1} \right) + \left(\frac{8k-5}{k+1} \right) = 0$$

$$\Rightarrow 4k - 2 = 0$$

$$\Rightarrow k = \frac{1}{2}$$



Area of $\triangle ABC$

$$= \frac{1}{2} [1 (-3 - 2) + 7 (2 - 1) + 12 (1 + 3)]$$

$$= \frac{1}{2} [-5 + 7 + 48]$$

$$= \frac{1}{2} [50]$$

$$= 25 \text{ sq. units}$$

Area of $\triangle ACD$

$$= \frac{1}{2} [1 (2 - 21) + 12 (21 - 1) + 7 (1 - 2)]$$

$$= \frac{1}{2} [-19 + 12 (20) - 7]$$

$$= \frac{1}{2} [-26 + 240]$$

$$= \frac{1}{2} [214]$$

$$= 107 \text{ sq. units}$$

So, area of quadrilateral ABCD

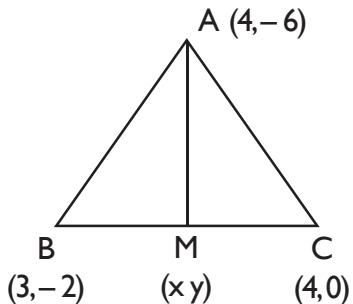
$$= \text{area of } \triangle ABC + \text{area of } \triangle ACD$$

$$= 25 + 107$$

$$= 132 \text{ sq. units}$$

Section D

31.



Let AM be the median such that point M is (x, y)

$$(x, y) = \left(\frac{3+5}{3}, \frac{-2+2}{3} \right)$$

$$(x, y) = (4, 0)$$

$$\text{So, point M } (x, y) = (4, 0)$$

Area of $\triangle AMB$

$$= \frac{1}{2} [4 (y + 2) + x (-2 + 6) + 3 (-6 - y)]$$

$$= \frac{1}{2} [4y + 8 - 2x + 6 - 18 - 3y]$$

$$= \frac{1}{2} [4x + y - 10]$$

$$= \frac{1}{2} [4 (4) + 0 - 10]$$

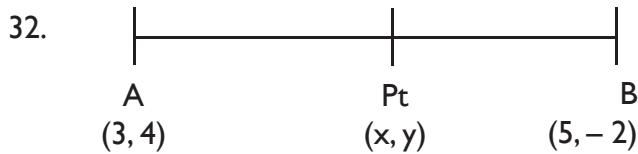
$$= 3 \text{ sq. units}$$

Area of $\triangle AMC$

$$= \frac{1}{2} [4 (y - 2) + x (2 + 6) + 5 (-6 - y)]$$

$$\begin{aligned}
 &= \frac{1}{2} [4y - 8 + 8x - 30 - 5y] \\
 &= \frac{1}{2} [8x - y - 38] \\
 &= \frac{1}{2} [8(4) - 0 - 38] \\
 &= 3 \text{ sq. units}
 \end{aligned}$$

So, median divides the triangle into two triangle of equal area.



$$PA = PB$$

$$\sqrt{(-3-x)^2 + (4-y)^2} = \sqrt{(5-x)^2 + (-2-y)^2}$$

On squaring both sides, we get

$$\begin{aligned}
 (3-x)^2 + (4-y)^2 &= (5-x)^2 + (-2-y)^2 \\
 \Rightarrow 9 + x^2 - 6x + 16 + y^2 - 8y &= 25 + x^2 - 10 + 4 + y^2 + 4y \\
 \Rightarrow -6x - 8y + 25 &= -10x + 4y + 29 \\
 \Rightarrow 4x - 12y - 4 &= 0 \\
 \Rightarrow x - 3y &= 1 \quad \textcircled{1}
 \end{aligned}$$

Also, area of $\triangle PAB = 10$

$$\begin{aligned}
 \therefore \frac{1}{2} [x(4+2) + 3(-2-y) + 5(y-4)] &= 10 \\
 \Rightarrow [6x - 6 - 3y + 5y - 20] &= 20 \\
 \Rightarrow [6x + 2y - 26] &= 20 \\
 \Rightarrow [3x + y - 13] &= 10 \\
 \Rightarrow 3x + y - 13 &= \pm 10 \\
 \Rightarrow 3x + y = 23 \quad \textcircled{2} \text{ or } 3x + y &= 3 \quad \textcircled{3}
 \end{aligned}$$

From $\textcircled{1}$, $x = 1 + 3y$

So, eq. $\textcircled{2}$ becomes $3 + 9y + y = 23$

$$\begin{aligned}
 10y &= 20 \\
 y &= 2
 \end{aligned}$$

$$\begin{aligned}
 \text{So, } x &= 1 + 3y \\
 &= 1 + 6 \\
 &= 7
 \end{aligned}$$

$$\text{So, } P(x, y) = (7, 2)$$

On putting $x = 1 + 3y$ in $\textcircled{3}$, we get

$$3(1 + 3y) + y = 3$$

$$3 + 9y + y = 3$$

$$10y = 0$$

$$y = 0$$

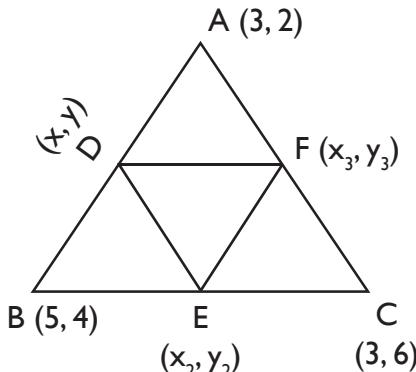
$$\text{So, } x = 1 + 3y$$

$$= 1 + 0$$

$$= 1$$

$$\text{So, } P(x, y) = (1, 0)$$

33.



By midpoint formula,

$$D(x_2, y_2) = \left(\frac{3+5}{2}, \frac{2+4}{2} \right)$$

$$D(x_2, y_2) = (4, 3)$$

$$\begin{aligned}
 \text{Again, } E(x_2, y_2) &= \left(\frac{5+3}{2}, \frac{4+6}{2} \right) \\
 &= (4, 5)
 \end{aligned}$$

$$\begin{aligned}
 F(x_3, y_3) &= \left(\frac{3+3}{2}, \frac{2+6}{2} \right) \\
 &= (3, 4)
 \end{aligned}$$

Area of $\triangle DEF$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$\begin{aligned}
 &= \frac{1}{2} [4(5-4) + 4(4-3) + 3(3-5)] \\
 &= \frac{1}{2} [4+4-6] = 1 \text{ sq. unit}
 \end{aligned}$$

34. Let $A(x_1 = -2, y_1 = 5)$, $B(x_2 = k, y_2 = -4)$ and $C(x_3 = 2k+1, y_3 = 10)$ be the vertices of the triangle, so

Area of ($\triangle ABC$)

$$\begin{aligned}
 &= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \\
 53 &= \frac{1}{2} [(-2)(-4-10) + k(10-5) + (2k+1)(5+4)] \\
 \Rightarrow 53 &= \frac{1}{2} [28 + 5k + 9(2k+1)] \\
 \Rightarrow 28 + 5k + 18k + 9 &= 106 \\
 \Rightarrow 37 + 23k &= 106 \\
 \Rightarrow 23k &= 106 - 37 = 69 \\
 \Rightarrow k &= \frac{69}{23} = 3
 \end{aligned}$$

Hence, $k = 3$

The value of k is 3.

35. $A(-2, 3)$ $B(6, 5)$

$D(-4, -3)$ $C(x, -5)$

Area of quadrilateral ABCD = 80 sq. units

i.e. area of $\triangle ABC$ + area of $\triangle ACD = 80$

$$\begin{aligned}
 \text{i.e. } \frac{1}{2} [-2(5+5) + 6(-5-3)] + \\
 \frac{1}{2} [-2(-5+3) + x(-3-3)] &= 80 \\
 \Rightarrow \frac{1}{2} [4 - 6x - 32] &= 160 \\
 \Rightarrow [-6x - 28] &= 160
 \end{aligned}$$

$$\begin{aligned}
 \Rightarrow -6x - 28 &= \pm 160 \\
 -6x - 28 &= 160 & -6x - 28 &= -160 \\
 6x &= -188 & -6x &= -132 \\
 x &= \frac{-94}{3} & x &= 22
 \end{aligned}$$

36. Let $D(x, y)$ be the Circumcentre.

We know that Circumcentre of a triangle is equidistant from each of the vertices.

Let the vertices be $A(x_1, y_1) = (8, 6)$, $B(x_2, y_2) = (8, -2)$ and $C(x_3, y_3) = (2, -2)$.

So, $AD = BD$

$$\sqrt{(8-x)^2 + (6-y)^2} = \sqrt{(8-x)^2 + (-2-y)^2}$$

On squarring both sides, we get

$$(8-x)^2 + (6-y)^2 = (8-x)^2 + (-2-y)^2$$

$$(6-y)^2 = (-2-y)^2$$

$$36 + y^2 - 12y = 4 + y^2 + 4y$$

$$32 = 16y$$

$$y = 2$$

Also, $BD = CD$

$$\sqrt{(8-x)^2 + (-2-y)^2} = \sqrt{(2-x)^2 + (-2-y)^2}$$

$$(8-x)^2 + (-2-y)^2 = (2-x)^2 + (-2-y)^2$$

$$64 + x^2 - 16x + 4y^2 + 4y = 4 + x^2 - 4x + 4 + y^2 + 4y$$

$$\Rightarrow -16x + 4y + 68 = -4x + 4y + 8$$

$$\Rightarrow 12x = 60$$

$$\Rightarrow x = 5$$

So, Circumcentre is $(x, y) = (5, 2)$

Circumradius

$$= AD$$

$$= \sqrt{(8-x)^2 + (6-y)^2}$$

$$= \sqrt{(8-5)^2 + (6-2)^2}$$

$$\begin{aligned}
 &= \sqrt{9+16} \\
 &= \sqrt{25} \\
 &= 5
 \end{aligned}$$

37. By midpoint formula,

$$\begin{aligned}
 C(x, y) &= \left(\frac{0+2a}{3}, \frac{26+0}{3} \right) \\
 &= (a, b)
 \end{aligned}$$

Using distance formula, we have

$$\begin{aligned}
 BC &= \sqrt{(a-0)^2 + (b-2b)^2} \\
 &= \sqrt{a^2 + b^2}
 \end{aligned}$$

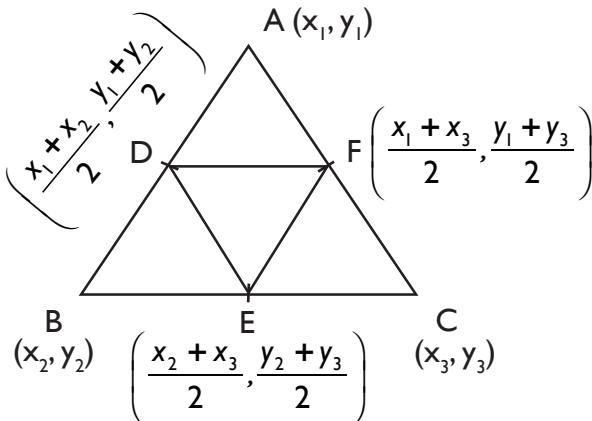
$$\begin{aligned}
 OC &= \sqrt{(a-0)^2 + (b-0)^2} \\
 &= \sqrt{a^2 + b^2}
 \end{aligned}$$

$$\begin{aligned}
 AC &= \sqrt{(a-2a)^2 + (b-0)^2} \\
 &= \sqrt{a^2 + b^2}
 \end{aligned}$$

$$\text{So, } BC = CO = AC$$

∴ Point C is equidistant from the vertices O, and B.

38.



By midpoint formula,

$$D \text{ is } \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)$$

$$E \text{ is } \left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2} \right)$$

$$F \text{ is } \left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2} \right)$$

Area of $\triangle ABC$

$$\frac{1}{2} [x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)]$$

Consider ar $\triangle DEF$

$$\begin{aligned}
 &= \frac{1}{2} \left[\left(\frac{x_1+x_2}{2} \right) \left[\left(\frac{y_2+y_3}{2} \right) - \left(\frac{y_1+y_3}{2} \right) \right] \right. \\
 &\quad \left. + \left(\frac{x_2+x_3}{2} \right) \left[\left(\frac{y_1+y_3}{2} \right) - \left(\frac{y_1+y_2}{2} \right) \right] \right. \\
 &\quad \left. + \left(\frac{x_1+x_3}{2} \right) \left[\left(\frac{y_1+y_2}{2} \right) - \left(\frac{y_2+y_3}{2} \right) \right] \right]
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{8} \left[(x_1+x_2)(y_2-y_1) \right. \\
 &\quad \left. + (x_2+x_3)(y_3-y_2) \right. \\
 &\quad \left. + (x_1+x_3)(y_1-y_3) \right]
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{8} \left[x_1[(y_2-y_1)+(y_1-y_3)] \right. \\
 &\quad \left. + x_2[(y_2-y_1)+(y_3-y_2)] \right. \\
 &\quad \left. + x_3[(y_3-y_2)+(y_1-y_3)] \right]
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{8} \left[x_1(y_2-y_3) + x_2(y_3-y_1) \right. \\
 &\quad \left. + x_3(y_1-y_2) \right]
 \end{aligned}$$

$$= \left(\frac{1}{4} \right) \left(\frac{1}{2} \right) [x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)]$$

$$= \frac{1}{4} \text{ area of } \triangle ABC$$

39. Using formula for area of triangle,

$$\text{ar } \triangle DBC = \frac{1}{2} [x(5+2) - 3(-2-3x) + 4(3x-5)]$$

$$= \frac{1}{2} [7x+6+9x+12x-20]$$

$$= \frac{1}{2} [28x-14]$$

$$= [14x - 7] \quad (1)$$

Using formula for area of triangle,

$$= \frac{1}{2} [6(5+2) - 3(-2-3) + 4(3-5)]$$

$$= \frac{1}{2} [42 + 15 - 8]$$

$$= \frac{1}{2} [49] \text{ sq. units}$$

$$\text{As } \frac{ar\Delta DBC}{ar\Delta ABC} = \frac{1}{2}$$

$$\Rightarrow \frac{|14x - 7|}{|49|} = \frac{1}{2}$$

$$\Rightarrow \frac{2|14x - 7|}{49} = \frac{1}{2}$$

$$\Rightarrow |14x - 7| = \frac{49}{4}$$

$$\Rightarrow 14x - 7 = \pm \frac{49}{4}$$

$$\text{If } 14x - 7 = \frac{49}{4}$$

$$14x = \frac{49}{4} + 7 = \frac{49 + 28}{4} = \frac{77}{4}$$

$$\Rightarrow x = \frac{11}{8}$$

$$\text{If } 14x - 7 = \frac{-49}{4}$$

$$14x = \frac{-49}{4} + 7 = \frac{-49 + 28}{4} = \frac{-21}{4}$$

$$\Rightarrow x = \frac{-3}{8}$$

40. As the point $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) lie on the same line, area of triangle formed by these points is 0.

$$\text{i.e. } \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

On dividing by $x_1 x_2 x_3$, we get

$$\left[\frac{x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)}{x_1 x_2 x_3} \right] = 0$$

$$\left[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_1 x_3} + \frac{y_1 - y_2}{x_1 x_2} \right] = 0$$

$$\therefore \frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_1 x_3} + \frac{y_1 - y_2}{x_1 x_2} = 0$$

MULTIPLE CHOICE QUESTIONS

1. $\cot x = \frac{12}{16} = \frac{3}{4}$

$$\frac{\sin x - \cos x}{\sin x + \cos x} = \frac{1 - \cot x}{1 + \cot x}$$

$$\begin{aligned} &= \frac{1 - \frac{3}{4}}{1 + \frac{3}{4}} \\ &= \frac{1}{4} \times \frac{4}{7} \end{aligned}$$

$$= \frac{1}{7}$$

Option (a)

2. $\frac{x(2)^2(\sqrt{2})^2}{8\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{\sqrt{3}}{2}\right)^2} = (\sqrt{3})^2 - \left(\frac{1}{\sqrt{3}}\right)^2$

$$\frac{8x}{3} = 3 - \frac{1}{3} = \frac{8}{3}$$

$$x = 1$$

Option (a)

3. $A + B + C = 180^\circ$

$$\Rightarrow B + C = 180^\circ - A$$

$$\therefore \sin\left(\frac{B+C}{2}\right) = \sin\left(\frac{180^\circ - A}{2}\right)$$

$$= \sin\left(90^\circ - \frac{A}{2}\right)$$

$$= \cos\frac{A}{2}$$

Option (b)

4. $\frac{\tan 30^\circ}{\tan 0^\circ - \cot 30^\circ}$

$$\begin{aligned} &= \frac{1}{0 - \sqrt{3}} \\ &= \frac{-1}{3} \end{aligned}$$

Option (b)

5. Consider

$$(a \sin\theta + b \cos\theta)^2$$

$$= a^2 \sin^2\theta + b^2 \cos^2\theta + 2ab \sin\theta \cos\theta$$

$$= a^2 (1 - \cos^2\theta) + b^2 (1 - \sin^2\theta) + 2ab \sin\theta \cos\theta$$

$$= a^2 + b^2 - a^2 \cos^2\theta - b^2 \sin^2\theta + 2ab \sin\theta \cos\theta$$

$$= a^2 + b^2 - (a^2 \cos^2\theta + b^2 \sin^2\theta) + 2ab \sin\theta \cos\theta \quad (i)$$

$$\text{Also, } a \cos\theta - b \sin\theta = c$$

$$\Rightarrow (a \cos\theta - b \sin\theta)^2 = c^2$$

$$\Rightarrow a^2 \cos^2\theta + b^2 \sin^2\theta - 2ab \sin\theta \cos\theta = c^2$$

$$\Rightarrow a^2 \cos^2\theta + b^2 \sin^2\theta = c^2 + 2ab \sin\theta \cos\theta \quad (ii)$$

$$\text{So, } (a \sin\theta + b \cos\theta)^2$$

$$= a^2 + b^2 + 2ab \sin\theta \cos\theta - c^2 - 2ab \sin\theta \cos\theta$$

[From (i) and (ii)]

$$= a^2 + b^2 - c^2$$

$$\therefore a \sin\theta + b \cos\theta = \pm \sqrt{a^2 + b^2 - c^2}$$

Option (b)

WORKSHEET 1

Section A

$$1. \frac{\cos(90^\circ - \theta) \sec(90^\circ - \theta) \tan\theta}{\cos(90^\circ - \theta) \sin(90^\circ - \theta) \cot(90^\circ - \theta)} + \frac{\tan(90^\circ - \theta)}{\cot\theta}$$

$$= \frac{\sin\theta \cosec\theta \tan\theta}{\sec\theta \cos\theta \tan\theta} \\ = \frac{\cot\theta}{\cot\theta} \\ = \frac{1}{1} + \frac{1}{1} \\ = 2$$

2. Consider

$$\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A} \\ = \frac{\tan(90^\circ - B) \tan B + \tan A \cot(90^\circ - A)}{\sin A \sec(90^\circ - A)} \\ - \frac{\sin^2 B}{\cos^2(90^\circ - B)} \\ = \frac{\cot B \tan B + \tan^2 A}{\sin A \cosec A} - \frac{\sin^2 B}{\sin^2 B} \\ = \frac{1 + \tan^2 A}{1} - 1 \\ = \tan^2 A$$

$$3. \sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}} \\ = \sqrt{\frac{1 + \sin\theta}{1 - \sin\theta} \times \frac{1 + \sin\theta}{1 - \sin\theta}} \\ = \sqrt{\frac{(1 + \sin\theta)^2}{1 - \sin^2\theta}} \\ = \sqrt{\frac{(1 + \sin\theta)^2}{\cos^2\theta}}$$

$$= \frac{1 + \sin\theta}{\cos\theta}$$

$$4. \cos(a + b) = 0 \\ a + b = 90^\circ \\ \therefore a = 90^\circ - b$$

$$\text{Consider } \sin(a - b) = \sin[90^\circ - 26] \\ = \cos 26^\circ$$

$$5. \frac{\tan^2 - \sec^2\theta}{\cot^2 - \cosec^2\theta} \\ = \frac{\sec^2\theta - \tan^2\theta}{\cosec^2\theta - \cot^2\theta} \\ = \frac{1}{1} \\ = 1$$

$$6. \cosec\theta = 3x \Rightarrow x = \frac{1}{3} \cosec\theta \\ \cot\theta = \frac{3}{x} \Rightarrow \frac{1}{x} = \frac{1}{3} \cot\theta \\ \text{consider } x^2 - \frac{1}{x^2} = \frac{1}{9} \quad \cosec^2\theta - \frac{1}{9} \cot^2\theta = \frac{1}{9}$$

$$7. \tan A = \frac{5}{12} \\ \text{Consider } (\sin A + \cos A) \sec A$$

$$= (\sin A + \cos A) \frac{1}{\cos A} \\ = \tan A + 1 \\ = \frac{5}{12} + 1 \\ = \frac{17}{12}$$

$$8. \text{Consider } 6 \tan^2\theta - \frac{6}{\cos^2\theta} \\ = 6(\tan^2\theta - \sec^2\theta) \\ = 6(I) \\ = 6$$

Section B

9. $2 \sin^2 30^\circ - 3 \cos^2 45^\circ + \tan^2 60^\circ$

$$= 2 \left(\frac{1}{2} \right)^2 - 3 \left(\frac{1}{\sqrt{2}} \right)^2 + (\sqrt{3})^2$$

$$= \frac{1}{2} - \frac{3}{2} + 3$$

$$= 2$$

10. (i) We know that $-1 \leq \sin \theta \leq 1$

$$\therefore 0 \leq \sin^2 \theta \leq 1$$

$$\text{If } \sin \theta = x + \frac{1}{x}$$

On squaring both sides, we get

$$\sin^2 \theta = x^2 + \frac{1}{x^2} + 2$$

$$\text{Here, R.H.S} = x^2 + \frac{1}{x^2} + 2 > 2$$

but Maximum value of $\sin^2 \theta$ is

$$\therefore \sin^2 \theta \text{ is } \neq x + \frac{1}{x}$$

(ii) As $(a - b)^2 \geq 0$

$$\Rightarrow a^2 + b^2 - 2ab \geq 0$$

$$\Rightarrow a^2 + b^2 \geq 2ab$$

$$\therefore \cos \theta = \frac{a^2 + b^2}{2ab} \geq \frac{2ab}{2ab} = 1$$

$$\Rightarrow \cos \theta \geq 1$$

$$\text{if } \cos \theta = 1$$

$$\frac{a^2 + b^2}{2ab} = 1$$

$$a^2 + b^2 = 2ab$$

$$(a - b)^2 = 0$$

$$a = b$$

but a and b are distvied

$$\therefore \cos \theta > 1$$

$$\text{but } -1 \leq \cos \theta \leq 1$$

$$\text{So, } \cos \theta \neq \frac{a^2 + b^2}{2ab}$$

11. (i) $2 \sin 3x = \sqrt{3}$

$$\sin 3x = \frac{\sqrt{3}}{2}$$

$$3x = 60^\circ$$

$$x = 20^\circ$$

(ii) $2 \sin \frac{x}{2} = 1$

$$\sin \frac{x}{2} = \frac{1}{2} = \sin 30^\circ$$

$$\frac{x}{2} = 30^\circ$$

$$x = 60^\circ$$

12. $\sin \theta + \sin^2 \theta = 1$

$$\Rightarrow \sin \theta = 1 - \sin^2 \theta$$

$$\Rightarrow \sin \theta = \cos^2 \theta$$

(i)

$$\Rightarrow \tan \theta = \cos \theta$$

Consider $\cos^2 \theta + \cos^4 \theta$

$$= \tan^2 \theta + \tan^4 \theta$$

$$= \tan^2 \theta (1 + \tan^2 \theta)$$

$$= \tan^2 \theta \sec^2 \theta$$

$$= \tan^2 \theta \frac{1}{\sin \theta}$$

By (i)

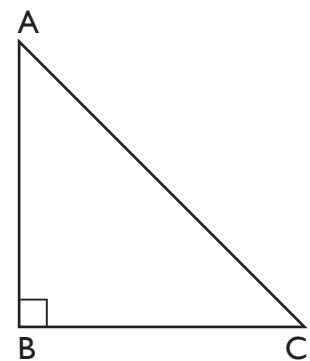
$$= \frac{\sin \theta}{\cos^2 \theta}$$

$$= \frac{\sin \theta}{\sin \theta}$$

By (i)

$$= 1$$

13.



$$\tan A = \frac{1}{\sqrt{3}}$$

$$\frac{BC}{AB} = \frac{1}{\sqrt{3}}$$

$$\text{Let } BC = k, AB = \frac{A+B=90^\circ}{A-B=30^\circ} k$$

$$\therefore AC^2 = BC^2 + AB^2 = 4k^2$$

$$AC = 2k$$

Consider

$$\sin A \cos C + \cos A \sin C$$

$$= \left(\frac{BC}{AC}\right)\left(\frac{BC}{AC}\right) + \left(\frac{AB}{AC}\right)\left(\frac{AB}{AC}\right)$$

$$= \frac{BC^2}{AC^2} + \frac{AB^2}{AC^2}$$

$$= \frac{BC^2 + AB^2}{AC^2}$$

$$= \frac{AC^2}{AC^2}$$

$$= 1$$

14. Consider

$$4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ - \cos^2 90^\circ$$

$$= 4(1)^2 - (2)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - (0)^2$$

$$= 4 - 4 + \frac{3}{4}$$

$$= \frac{3}{4}$$

15. Consider

$$(\cosec \theta - \cot \theta)^2 = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2$$

$$= \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2$$

$$= \frac{(1 - \cos \theta)^2}{\sin \theta}$$

$$= \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta}$$

$$= \frac{1 - \cos \theta}{1 + \cos \theta}$$

16. Consider

$$3 \cos^2 30^\circ + \sec^2 30^\circ + 2 \cos^2 20^\circ + 3 \sin^2 90^\circ - \tan^2 60^\circ$$

$$= 3\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^2 + 2(1)^2 + 3(1)^2 - (\sqrt{3})^2$$

$$= \frac{9}{4} + \frac{4}{3} + 2 + 3 - 3$$

$$= \frac{9}{4} + \frac{4}{3} + 2$$

$$= \frac{27 + 16 + 24}{12}$$

$$= \frac{67}{12}$$

Section C

$$17. \tan \theta + \cot \theta = 2$$

$$\tan \theta + \frac{1}{\tan \theta} = 2$$

$$\tan^2 \theta - 2 \tan \theta + 1 = 0$$

$$(\tan \theta - 1)^2 = 0$$

$$\tan \theta - 1 = 0$$

$$\tan \theta = 1 = \tan 45^\circ$$

$$\theta = 45^\circ$$

Consider $\tan^7 \theta + \cot^7 \theta$

$$= \tan^7(45^\circ) + \cot^7(45^\circ)$$

$$= 1^7 + 1^7$$

$$= 1 + 1$$

$$= 2$$

18. Consider

$$\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta}$$

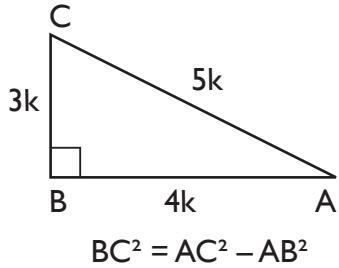
$$= \frac{\sin \theta (\sin \theta) + (1 + \cos \theta) (1 + \cos \theta)}{\sin \theta (1 + \cos \theta)}$$

$$= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2 \cos \theta}{\sin \theta (1 + \cos \theta)}$$

$$\begin{aligned}
 &= \frac{2 + 2 \cos \theta}{\sin \theta (1 + \cos \theta)} \\
 &= \frac{2 + (1 + \cos \theta)}{\sin \theta (1 + \cos \theta)} \\
 &= \frac{2}{\sin \theta} = 2 \operatorname{cosec} \theta
 \end{aligned}$$

19. $\sec A = \frac{5}{4} = \frac{AC}{AB}$
LHS

$$\frac{3\sin A - 4\sin^3 A}{4\cos^3 A - 3\cos A}$$



$$BC^2 = AC^2 - AB^2$$

$$\begin{aligned}
 &= 25k^2 - 16k^2 \\
 &= 9k^2
 \end{aligned}$$

$$\therefore BC = 3k$$

So, $\frac{3\sin A - 4\sin^3 A}{4\cos^3 A - 3\cos A}$

$$\begin{aligned}
 &= \frac{3\left(\frac{3}{5}\right) - 4\left(\frac{3}{5}\right)^3}{4\left(\frac{4}{5}\right)^3 - 3\left(\frac{4}{5}\right)} \\
 &= \frac{\frac{9}{5} - \frac{108}{125}}{\frac{256}{125} - \frac{12}{5}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{9}{5} - \frac{108}{125}}{\frac{256}{125} - \frac{12}{5}}
 \end{aligned}$$

RHS

$$\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$

$$\begin{aligned}
 &= \frac{3\left(\frac{3}{4}\right) - \left(\frac{3}{4}\right)^3}{1 - 3\left(\frac{3}{4}\right)^2} \\
 &= \frac{\frac{9}{4} - \frac{27}{64}}{1 - \frac{27}{16}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{64}{16} - \frac{27}{16}}{16 - 24} \\
 &= \frac{117}{-44}
 \end{aligned}$$

$$= \frac{-117}{44}$$

$$\begin{aligned}
 &= \frac{\frac{225 - 108}{125}}{\frac{256 - 300}{125}} \\
 &= \frac{117}{-44}
 \end{aligned}$$

So, LHS = RHS

20. $a \cos \theta + b \sin \theta = m$

$$a \sin \theta - b \cos \theta = n$$

To prove : $a^2 + b^2 = m^2 + n^2$

Proof $a \cos \theta + b \sin \theta = m$

On squaring both sides, we get

$$a^2 \cos^2 \theta + b^2 \sin^2 \theta + 2ab \sin \theta \cos \theta = m^2 \quad (1)$$

$$a \sin \theta - b \cos \theta = n$$

On squaring both sides, we get

$$a^2 \sin^2 \theta + b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta = n^2 \quad (2)$$

On adding (1) and (2), we get

$$a^2 (\sin^2 \theta + \cos^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) = m^2 + n^2$$

$$\Rightarrow a^2 + b^2 = m^2 + n^2$$

21. $x = a \cos^3 \theta$

$$y = b \sin^3 \theta$$

Consider $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}}$

$$= \left(\frac{a \cos^3 \theta}{a}\right)^{\frac{2}{3}} + \left(\frac{b \cos^3 \theta}{b}\right)^{\frac{2}{3}}$$

$$= \cos^2 \theta + \sin^2 \theta$$

$$= 1$$

22. $\sin (A + B) = 1 = \sin 90^\circ$

$$A + B = 90^\circ \quad (1)$$

$$\cos (A - B) = \frac{\sqrt{3}}{2} = \cos 30^\circ$$

$$A - B = 30^\circ \quad (2)$$

On solving (1) and (2), we get

$$A + B = 90^\circ$$

$$A - B = 30^\circ$$

$$\hline$$

$$2A = 120^\circ$$

$$A = 60^\circ$$

From (1), $B = 90^\circ - A$

$$= 90^\circ - 60^\circ$$

$$= 30^\circ$$

23. Consider

$$(1 - \sin \theta + \cos \theta)^2$$

$$= [(1 - \sin \theta) + \cos \theta]^2$$

$$= (1 - \sin \theta)^2 + \cos^2 \theta + 2\cos \theta (1 - \sin \theta)$$

$$= (1 - \sin \theta)^2 + (1 - \sin^2 \theta) + 2\cos \theta (1 - \sin \theta)$$

$$= (1 - \sin \theta) [1 - \sin \theta + 1 + \sin \theta + 2\cos \theta]$$

$$= (1 - \sin \theta) (2 \cos \theta + 2)$$

$$= 2 (1 + \cos \theta) (1 - \sin \theta)$$

$$= \text{RHS}$$

$$24. \text{ LHS} = \frac{\tan A + \sin A}{\tan A - \sin A}$$

$$= \frac{\frac{\sin A}{\cos A} + \sin A}{\frac{\sin A}{\cos A} - \sin A}$$

$$= \frac{\sin A + \sin A \cos A}{\cos A}$$

$$= \frac{\sin A - \sin A \cos A}{\cos A}$$

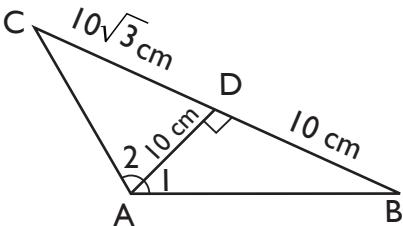
$$= \frac{\sin A + \sin A \cos A}{\sin A - \sin A \cos A}$$

$$= \frac{\sin A (1 + \cos A)}{\sin A (1 - \cos A)} = \frac{1 + \frac{1}{\sec A}}{1 - \frac{1}{\sec A}}$$

$$= \frac{\sec A + 1}{\sec A - 1} = \frac{\sec A + 1}{\sec A - 1} = \text{RHS}$$

Section D

25.



In $\triangle ADB$,

$$\tan (\angle 1) = \frac{BD}{AD} = \frac{10}{2} = 5$$

$$\therefore \angle 1 = 45^\circ$$

In $\triangle ADC$,

$$\tan (\angle 2) = \frac{10\sqrt{3}}{10} = \sqrt{3}$$

$$\angle 2 = 60^\circ$$

$$\text{So, } \angle A = \angle 1 + \angle 2$$

$$= 45^\circ + 60^\circ$$

$$= 105^\circ$$

26. Consider

$$\text{LHS} = \frac{\sin \theta}{1 - \cos \theta}$$

$$= \frac{\sin \theta (1 + \cos \theta)}{(1 - \cos \theta) (1 + \cos \theta)}$$

$$= \frac{\sin \theta (1 + \cos \theta)}{1 - \cos^2 \theta}$$

$$= \frac{\sin \theta (1 + \cos \theta)}{\sin^2 \theta}$$

$$= \frac{1 + \cos \theta}{\sin \theta}$$

$$= \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}$$

$$= \operatorname{cosec} \theta + \cot \theta$$

$$= \text{RHS}$$

27. Given : $(2\theta + 45^\circ)$ & $(30^\circ + \theta)$ and $\sin(2\theta + 45^\circ) = \cos(30^\circ + \theta)$

$$\sin(2\theta + 45^\circ) = \cos(30^\circ + \theta)$$

$$\sin(2\theta + 45^\circ) = \sin(90^\circ - (30^\circ - \theta))$$

$$[\sin(90^\circ - \theta) = \cos \theta]$$

$$\sin(2\theta + 45^\circ) = \sin(90^\circ - 30^\circ + \theta)$$

On equating both sides,

$$(2\theta + 45^\circ) = (60^\circ + \theta)$$

$$2\theta - \theta = 60^\circ - 45^\circ$$

$$\theta = 15^\circ$$

28. Consider

$$\begin{aligned} \text{LHS} &= \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} \\ &= \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} \\ &= \frac{\sin^2 A}{\cos A (\sin A - \cos A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)} \\ &= \frac{\sin^2 A}{\cos A (\sin A - \cos A)} - \frac{\cos^2 A}{\sin A (\cos A - \sin A)} \\ &= \frac{\sin^3 A - \cos^3 A}{\sin A \cos A (\sin A - \cos A)} \\ &= \frac{(\sin A - \cos A)(\sin^2 A + \cos^2 A + \sin A \cos A)}{\sin A \cos A (\sin A - \cos A)} \\ &= \frac{1 + \sin A \cos A}{\sin A \cos A} \\ &= 1 + \operatorname{cosec} A \sec A \\ &= \text{RHS} \end{aligned}$$

29. To prove :

$$\frac{1}{\operatorname{cosec} A - \cot A} - \frac{1}{\sin A}$$

$$= \frac{1}{\sin A} - \frac{1}{\operatorname{cosec} A + \cot A}$$

i.e. To prove

$$\frac{1}{\operatorname{cosec} A - \cot A} + \frac{1}{\operatorname{cosec} A + \cot A} = \frac{2}{\sin A}$$

Consider

$$\begin{aligned} &\frac{1}{\operatorname{cosec} A - \cot A} + \frac{1}{\operatorname{cosec} A + \cot A} \\ &= \frac{1}{\frac{1}{\sin A} - \frac{\cos A}{\sin A}} + \frac{1}{\frac{1}{\sin A} + \frac{\cos A}{\sin A}} \\ &= \frac{\sin A}{1 - \cos A} + \frac{\sin A}{1 + \cos A} \\ &= \left(\frac{1 + \cos A + 1 - \cos A}{(1 - \cos A)(1 + \cos A)} \right) \sin A \\ &= \left(\frac{2}{1 - \cos^2 A} \right) \sin A \\ &= \frac{2}{\sin^2 A} \sin A \\ &= \frac{2}{\sin A} \end{aligned}$$

$$30. \sin \theta + \cos \theta = p, \sec \theta + \operatorname{cosec} \theta = q$$

Consider

$$q(p^2 - 1)$$

$$= (\sec \theta + \operatorname{cosec} \theta) [\sin^2 \theta + \cos^2 \theta - 2]$$

$$= (\sec \theta + \operatorname{cosec} \theta) [\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1]$$

$$= \left(\frac{1}{\cos \theta} + \frac{1}{\sin \theta} \right) (2 \sin \theta \cos \theta)$$

$$= \left(\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} \right) (2 \sin \theta \cos \theta)$$

$$= 2(\sin \theta + \cos \theta)$$

$$= 2p$$

$$31. \sec \theta + \tan \theta = p \quad (i)$$

$$\text{We know that } \sec^2 \theta - \tan^2 \theta = 1$$

$$\begin{aligned}\Rightarrow (\sec\theta - \tan\theta)(\sec\theta + \tan\theta) &= 1 \\ \Rightarrow (\sec\theta - \tan\theta)p &= 1 \\ \Rightarrow \sec\theta - \tan\theta &= \frac{1}{p} \quad (\text{ii})\end{aligned}$$

On adding (i) and (ii), we get

$$2\sec\theta = p + \frac{1}{p}$$

$$\sec\theta = \frac{1}{2} \left(p + \frac{1}{p} \right)$$

On subtracting (i) from (ii), we get

$$-2\tan\theta = \frac{1}{p} - p$$

$$\tan\theta = \frac{1}{2} \left(p - \frac{1}{p} \right)$$

Also,

$$\sin\theta = \frac{\tan\theta}{\sec\theta} = \frac{\frac{1}{2} \left(p - \frac{1}{p} \right)}{\frac{1}{2} \left(p + \frac{1}{p} \right)} = \frac{p^2 - 1}{p^2 + 1}$$

$$32. \sin\theta + \cos\theta = \sqrt{2}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta = 1$$

$$\Rightarrow \cos\frac{\pi}{4}\sin\theta + \sin\frac{\pi}{4}\cos\theta = 1$$

$$\Rightarrow \sin\left(\frac{\pi}{4} + \theta\right) = 1 = \sin\frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{4} + \theta = \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{2} - \frac{\pi}{4}$$

$$\frac{\pi}{4}$$

Consider

$$\tan\theta + \cot\theta$$

$$= \tan\frac{\pi}{4} + \cot\frac{\pi}{4}$$

$$= 1 + 1$$

$$= 2$$

WORKSHEET 2

Section A

1. Consider

$$\begin{aligned}(1 + \cot^2\theta)\sin^2\theta \\ = \left(1 + \frac{\cos^2\theta}{\sin^2\theta}\right)\sin^2\theta \\ = \sin^2\theta + \cos^2\theta \\ = 1\end{aligned}$$

2. Consider

$$\cosec^2\theta(1 + \cos\theta)(1 - \cos\theta) = x$$

$$\Rightarrow \cosec^2\theta(1 - \cos^2\theta) = x$$

$$\Rightarrow \cosec^2\theta\sin^2\theta = x$$

$$\Rightarrow \frac{1}{\sin^2\theta}\sin^2\theta = x$$

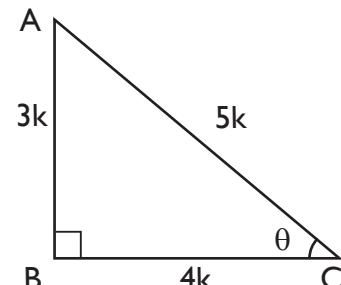
$$\Rightarrow 1 = x$$

$$3. \cos 1^\circ \cos 2^\circ \cos 3^\circ \dots \cos 179^\circ \cos 188^\circ$$

$$= \cos 1^\circ \cos 2^\circ \cos 3^\circ \dots \cos 90^\circ \dots \cos 179^\circ \cos 188^\circ$$

$$= 0$$

4.



$$\cot\theta = 4$$

$$\cot\theta = \frac{4}{3}$$

$$= \frac{BC}{AB}$$

Let BC = 4k, AB = 3k

By Pythagoras theorem,

$$\begin{aligned}
 AC^2 &= AB^2 + BC^2 \\
 &= (3k)^2 + (4k)^2 \\
 &= 9k^2 + 16k^2 \\
 &= 25k^2
 \end{aligned}$$

$$\therefore AC = 5k$$

$$\text{Consider } \frac{4\cos\theta - \sin\theta}{2\cos\theta + \sin\theta}$$

$$\begin{aligned}
 &= \frac{4\left(\frac{4}{5}\right) - \left(\frac{3}{5}\right)}{2\left(\frac{4}{5}\right) + \frac{3}{5}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{16}{5} - \frac{3}{5}}{\frac{8}{5} + \frac{3}{5}} \\
 &= \frac{13}{5} \times \frac{5}{11} \\
 &= \frac{13}{11}
 \end{aligned}$$

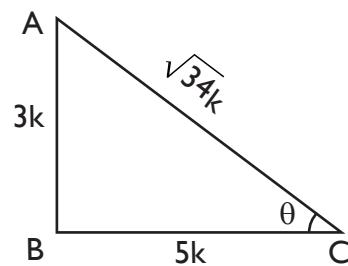
$$5. \text{ Consider } (\sec A + \tan A)(1 - \sin A)$$

$$\begin{aligned}
 &= \left(\frac{1}{\cos A} \frac{\sin}{\cos A} \right) (1 - \sin A) \\
 &= \frac{(1 + \sin A)(1 - \sin A)}{\cos A} \\
 &= \frac{1 - \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A} \\
 &= \cos A
 \end{aligned}$$

$$6. 3 \cos\theta = 5 \sin\theta$$

$$\frac{3}{5} = \frac{\sin\theta}{\cos\theta}$$

$$\tan\theta = \frac{3}{5} = \frac{AB}{BC}$$



$$\text{Let } AB = 3k$$

$$BC = 5k$$

By Pythagoras theorem,

$$\begin{aligned}
 AC^2 &= AB^2 + BC^2 \\
 &= 9k^2 + 25k^2 \\
 &= 34k^2
 \end{aligned}$$

$$\Rightarrow AC = \sqrt{34} k$$

Consider

$$\frac{5\sin\theta - 2\sec^3\theta + 2\cos\theta}{5\sin\theta + 2\sec^3\theta + 2\cos\theta}$$

$$\begin{aligned}
 &= \frac{5\left(\frac{3}{\sqrt{34}}\right) - 2\left(\frac{\sqrt{34}}{5}\right)^3 + 2\left(\frac{5}{\sqrt{34}}\right)}{5\left(\frac{3}{\sqrt{34}}\right) + 2\left(\frac{\sqrt{34}}{5}\right)^3 - 2\left(\frac{5}{\sqrt{34}}\right)}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{15}{\sqrt{34}} + \frac{10}{\sqrt{34}} - \frac{68}{125}\sqrt{34}}{\frac{15}{\sqrt{34}} + \frac{68}{125}\sqrt{34} - \frac{10}{\sqrt{34}}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{25\sqrt{34}}{34} - \frac{68}{125}\sqrt{34}}{\frac{5\sqrt{34}}{34} + \frac{68}{125}\sqrt{34}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{\frac{3125\sqrt{34} - 2312\sqrt{34}}{4250}}{\frac{625\sqrt{34} + 2312\sqrt{34}}{4250}} \\
 &= \frac{813\sqrt{34}}{2937\sqrt{34}}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{271}{979} \\
 &\frac{\cos(90^\circ - \theta) \sec(90^\circ - \theta) \tan \theta}{\csc(90^\circ - \theta) \sin(90^\circ - \theta) \cot(90^\circ - \theta)} \\
 &+ \frac{\tan(90^\circ - \theta)}{\cot \theta} \\
 &= \frac{\sin \theta \csc \theta \tan \theta}{\sec \theta \cos \theta \tan \theta} + \frac{\cot \theta}{\cot \theta}
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{1} + 1 \\
 &= 2
 \end{aligned}$$

$$\begin{aligned}
 7. \quad &\cos \phi \\
 &= \cos(180^\circ - (90^\circ + \theta)) \\
 &= \cos(90^\circ - \theta) \\
 &= \sin \theta \\
 &= \frac{4}{5}
 \end{aligned}$$

$$\begin{aligned}
 8. \quad &\cos^2 17^\circ - \sin^2 73^\circ \\
 &= \cos^2(90^\circ - 73^\circ) - \sin^2 73^\circ \\
 &= \sin^2 73^\circ - \sin^2 73^\circ \\
 &= 0
 \end{aligned}$$

$$\begin{aligned}
 9. \quad &\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ} \\
 &= \frac{2 \left(\frac{1}{\sqrt{3}} \right)}{1 + \left(\frac{1}{\sqrt{3}} \right)^2} \\
 &= \frac{2}{\sqrt{3}} \times \frac{3}{4} \\
 &= \frac{\sqrt{3}}{2}
 \end{aligned}$$

Section B

$$\begin{aligned}
 10. \quad &\tan 2\theta = \cot(\theta + 6^\circ) \\
 \Rightarrow &\cot(90^\circ - 2\theta) = \cot(\theta + 6^\circ)
 \end{aligned}$$

$$\begin{aligned}
 \Rightarrow &(90^\circ - 2\theta) = (\theta + 6^\circ) \\
 \Rightarrow &90^\circ - 6^\circ = 3\theta \\
 \Rightarrow &\frac{84}{3} = \theta \\
 \Rightarrow &28^\circ = \theta
 \end{aligned}$$

$$\begin{aligned}
 11. \quad &\frac{2 \cos 67^\circ}{\sin 23^\circ} - \frac{\tan 40^\circ}{\cot 50^\circ} - \cos 0^\circ \\
 &= \frac{2 \cos(90^\circ - 23^\circ)}{\sin 23^\circ} - \frac{\tan(90^\circ - 50^\circ)}{\cot 50^\circ} - \cos 0^\circ \\
 &= \frac{2 \sin 23^\circ}{\sin 23^\circ} - \frac{\cot 50^\circ}{\cot 50^\circ} - \cos 0^\circ \\
 &= 2 - 1 - 1 \\
 &= 0
 \end{aligned}$$

$$\begin{aligned}
 12. \quad &\sec 4A = \csc(A - 20^\circ) \\
 &\csc(90^\circ - 4A) = \csc(A - 20^\circ) \\
 &(\sec \theta = \csc(90^\circ - \theta))
 \end{aligned}$$

Comparing angles

$$90^\circ - 4A = A - 20^\circ$$

$$-4A - A = -20^\circ - 90^\circ$$

$$-5A = -110^\circ$$

$$A = \frac{-110^\circ}{-5}$$

$$A = 22^\circ$$

$$\begin{aligned}
 13. \quad &\frac{\cos 70^\circ}{\sin 20^\circ} + \frac{\cos 59^\circ}{\sin 31^\circ} - 8 \sin^2 30^\circ \\
 &= \frac{\cos(90^\circ - 20^\circ)}{\sin 20^\circ} + \frac{\cos(90^\circ - 31^\circ)}{\sin 31^\circ} - 8 \left(\frac{1}{2} \right)^2 \\
 &= \frac{\sin 20^\circ}{\sin 20^\circ} + \frac{\sin 31^\circ}{\sin 31^\circ} - \frac{8}{4} \\
 &= 1 + 1 - 2 \\
 &= 0
 \end{aligned}$$

14. $\sin 75 = \sin (30 + 45)$

$$= \sin 30 \cos 45 + \sin 45 \cos 30$$

$$= \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$

$$= \left(\frac{1}{2\sqrt{2}}\right) + \left(\frac{\sqrt{3}}{2\sqrt{2}}\right)$$

$$= \frac{(1 + \sqrt{3})}{2\sqrt{2}}$$

On rationalising :-

$$\frac{(1 + \sqrt{3})(2\sqrt{2})}{(2\sqrt{2})(2\sqrt{2})}$$

$$\frac{(2\sqrt{2} + 2\sqrt{6})}{8}$$

$$\frac{2(\sqrt{2} + \sqrt{6})}{8}$$

$$\frac{(\sqrt{2} + \sqrt{6})}{4}$$

Therefore $\sin 75 = \frac{(\sqrt{2} + \sqrt{6})}{4}$

15. $\sin\theta = \cos\theta$

$$\frac{\sin\theta}{\cos\theta} = 1$$

$$\tan\theta = 1$$

$$\therefore \theta = \frac{\pi}{4}$$

Consider $2 \tan^2\theta + \sin^2\theta - 1$

$$= 2 \tan^2 \frac{\pi}{4} + \sin^2 \frac{\pi}{4} - 1$$

$$= 2 (1)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 - 1$$

$$= 2 - \frac{1}{2} - 1$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}$$

16. $\alpha + \beta = 90^\circ$

To prove: $= \sqrt{\cos\alpha \operatorname{cosec}\beta - \cos\alpha \sin\beta}$

$$= \sin\alpha$$

Consider $\sqrt{\cos\alpha \sec\alpha - \cos\alpha \cos\alpha}$

$$= \sqrt{\cos\alpha \operatorname{cosec}(90^\circ - \alpha) - \cos\alpha \sin(90^\circ - \alpha)}$$

$$= \sqrt{\cos\alpha \sec\alpha - \cos\alpha \cos\alpha}$$

$$= \sqrt{1 - \cos^2\alpha}$$

$$= \sqrt{\sin^2\alpha}$$

$$= \sin\alpha$$

17. Consider

$$2\left(\frac{\cos 58^\circ}{\sin 32^\circ}\right) - \sqrt{3}\left(\frac{\cos 38^\circ \operatorname{cosec} 52^\circ}{\tan 15^\circ \tan 60^\circ \tan 75^\circ}\right)$$

$$= 2\left(\frac{\cos(90^\circ - 32^\circ)}{\sin 32^\circ}\right)$$

$$- \sqrt{3}\left(\frac{\cos(90^\circ - 52^\circ) \operatorname{cosec} 52^\circ}{\tan(90^\circ - 75^\circ) \tan 60^\circ \tan 75^\circ}\right)$$

$$= 2\left(\frac{\sin 32^\circ}{\sin 32^\circ}\right) - \sqrt{3}\left(\frac{\sin 52^\circ \operatorname{cosec} 52^\circ}{\cot 75^\circ \tan 60^\circ \tan 75^\circ}\right)$$

$$= 2 - \sqrt{3}\left(\frac{1}{\sqrt{3}}\right)$$

$$= 2 - 1$$

$$= 1$$

18. $\tan\theta + \frac{1}{\tan\theta} = 2$

On squaring both sides, we get

$$\tan^2\theta + \frac{1}{\tan^2\theta} + 2 \tan\theta \frac{1}{\tan\theta} = 4$$

$$\tan^2\theta + \frac{1}{\tan^2\theta} + 2 = 4$$

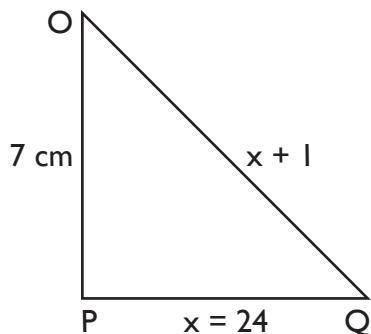
$$\tan^2\theta + \frac{1}{\tan^2\theta} = 4 - 2$$

$$\frac{1}{\tan^2\theta} = 2$$

$$\begin{aligned}
 19. \quad & \frac{2\tan 67^\circ}{\cot 23^\circ} - \frac{\sin 40^\circ}{\cos 50^\circ} - \tan 0^\circ \\
 &= \frac{2\tan (90^\circ - 23^\circ)}{\cot 23^\circ} - \frac{\sin (90^\circ - 50^\circ)}{\cos 50^\circ} - \tan 0^\circ \\
 &= \frac{2\cot 23^\circ}{\cot 23^\circ} - \frac{\cos 50^\circ}{\cos 50^\circ} - \tan 0^\circ \\
 &= 2 - 1 = 0 \\
 &= 0
 \end{aligned}$$

Section C

20.



$$OQ - PQ = 1$$

$$\text{Let } PQ = x$$

$$\therefore OQ = x + 1$$

By Pythagoras theorem,

$$OQ = OP + PQ$$

$$(x + 1)^2 = 7^2 + x^2$$

$$x^2 + 1 + 2x = 49 + x^2$$

$$2x = 48$$

$$x = 24$$

$$\therefore PQ = 24 \text{ cm and } OQ = 25 \text{ cm}$$

$$\begin{aligned}
 \sin Q &= \frac{OP}{OQ} \\
 &= \frac{7}{25}
 \end{aligned}$$

$$\begin{aligned}
 \cos Q &= \frac{PQ}{OQ} \\
 &= \frac{24}{25}
 \end{aligned}$$

$$\begin{aligned}
 21. \quad & \text{Consider} \\
 & (\sec \theta - \tan \theta)^2 \\
 &= \left(\frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} \right)^2 \\
 &= \left(\frac{1 - \sin \theta}{\cos \theta} \right)^2 \\
 &= \frac{(1 - \sin \theta)^2}{\cos^2 \theta} \\
 &= \frac{(1 - \sin \theta)^2}{1 - \sin^2 \theta} \\
 &= \frac{(1 - \sin \theta)(1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} \\
 &= \frac{1 - \sin \theta}{1 + \sin \theta}
 \end{aligned}$$

22. Consider

$$\begin{aligned}
 & \frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta} \\
 &= \frac{(\sec \theta - \tan \theta)(\sec \theta - \tan \theta)}{(\sec \theta + \tan \theta)(\sec \theta - \tan \theta)} \\
 &= \frac{(\sec \theta - \tan \theta)^2}{\sec^2 \theta - \tan^2 \theta} \\
 &= \frac{\sec^2 \theta + \tan^2 \theta - 2\sec \theta \tan \theta}{1} \\
 &= 1 + \tan^2 \theta + \tan^2 \theta - 2 \sec \theta \tan \theta \\
 &= 1 - 2 \sec \theta \tan \theta + 2 \tan^2 \theta
 \end{aligned}$$

$$\begin{aligned}
 23. \quad & \frac{\cos^2 20^\circ + \cos^2 70^\circ}{\sec^2 50^\circ - \cot^2 40^\circ} + 2 \operatorname{cosec} 58^\circ \\
 & - 2 \cot 58^\circ \tan 32^\circ - (4 \tan 13^\circ \tan 37^\circ \tan 45^\circ \\
 & \quad \tan 53^\circ \tan 77^\circ) \\
 &= \frac{\cos^2(90^\circ - 70^\circ) + \cos^2 70^\circ}{\sec^2(90^\circ - 40^\circ) - \cot^2 40^\circ} + 2 \operatorname{cosec} 58^\circ \\
 & - 2 \tan 32^\circ \cot(90^\circ - 32^\circ) - 4 \tan(90^\circ - \\
 & \quad 77^\circ) \tan(90^\circ - 53^\circ) (1) \tan 53^\circ \tan 77^\circ \\
 &= \frac{\sin^2 70^\circ + \cos^2 70^\circ}{\operatorname{cosec}^2 40^\circ - \cot^2 40^\circ} + 2 \operatorname{cosec} 58^\circ
 \end{aligned}$$

$$\begin{aligned}
 & -2 \tan 32^\circ \cosec 32^\circ - 4 \cot 77^\circ \cot 53^\circ \\
 & \tan 53^\circ \tan 77^\circ \\
 & = 1 + 2 \cosec 58^\circ - 2 \sec 32^\circ - 4 \\
 & = 1 + 2 \cosec (90^\circ - 32^\circ) - 2 \sec 32^\circ - 4 \\
 & = 1 + 2 \sec 32^\circ - 2 \sec 32^\circ - 4 \\
 & = -3
 \end{aligned}$$

24. $\cosec \theta + \cot \theta = p$ (i)

Consider

$$\begin{aligned}
 \cosec^2 \theta - \cot^2 \theta &= 1 \\
 (\cosec \theta - \cot \theta)(\cosec \theta + \cot \theta) &= 1 \\
 (\cosec \theta - \cot \theta) &= \frac{1}{p} \quad \text{(ii)}
 \end{aligned}$$

On adding (i) and (ii), we get

$$\begin{aligned}
 2 \cosec \theta &= p + \frac{1}{p} \\
 \cosec \theta &= \frac{1}{2} \left(p + \frac{1}{p} \right)
 \end{aligned}$$

On subtracting (i) and (ii), we get

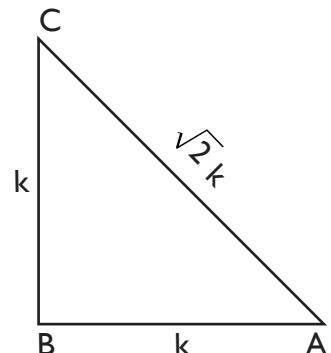
$$\begin{aligned}
 -2 \cot \theta &= \frac{1}{p} - p \\
 \cot \theta &= \frac{1}{2} \left(p - \frac{1}{p} \right) \\
 \therefore \cos \theta &= \frac{\cot \theta}{\cosec \theta} \\
 &= \frac{\frac{1}{2} \left(p - \frac{1}{p} \right)}{\frac{1}{2} \left(p + \frac{1}{p} \right)} \\
 &= \frac{p^2 - 1}{p^2 + 1}
 \end{aligned}$$

25. $\tan \theta = \frac{1}{\sqrt{7}}$

$$\frac{\cosec^2 \theta - \sec^2 \theta}{\cosec^2 \theta + \sec^2 \theta}$$

$$\begin{aligned}
 &= \frac{(1 + \cot^2 \theta) - (1 + \tan^2 \theta)}{(1 + \cot^2 \theta) + (1 + \tan^2 \theta)} \\
 &= \frac{\cot^2 \theta - \tan^2 \theta}{2 + \cot^2 \theta + \tan^2 \theta} \\
 &= \frac{\left(\sqrt{7}\right)^2 - \left(\frac{1}{\sqrt{7}}\right)^2}{2 + \left(\sqrt{7}\right)^2 + \left(\frac{1}{\sqrt{7}}\right)^2} \\
 &= \frac{7 - \frac{1}{7}}{2 + 7 + \frac{1}{7}} \\
 &= \frac{\frac{48}{7} \times \frac{7}{64}}{\frac{48}{64}} = \frac{3}{4}
 \end{aligned}$$

26.



$$\cosec A = \frac{\sqrt{2}}{1} = \frac{AC}{BC}$$

$$\text{Let } AC = \sqrt{2} k$$

$$BC = k$$

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

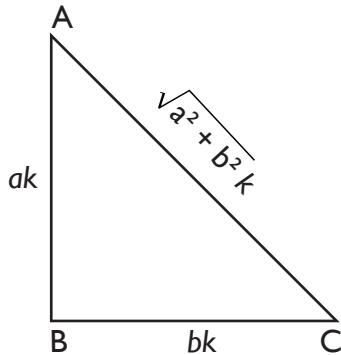
$$2k^2 = AB^2 + k^2$$

$$AB^2 = 2k^2 - k^2 = k^2$$

$$AB = k$$

$$\begin{aligned}
 \text{So, } & \frac{2\sin^2 A + 3\cot^2 A}{4\tan^2 A - \cos^2 A} \\
 &= \frac{2\left(\frac{1}{\sqrt{2}}\right)^2 + 3(1)^2}{4(1)^2 - (\sqrt{2})^2} \\
 &= \frac{1+3}{4-2} \\
 &= 2
 \end{aligned}$$

27.



$$\begin{aligned}
 \sin \theta &= \frac{a}{\sqrt{a^2 + b^2}} \\
 &= \frac{AB}{AC}
 \end{aligned}$$

$$\text{Let } AB = ak, AC = \sqrt{a^2 + b^2} k$$

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$(a^2 + b^2)k^2 = a^2k^2 + BC^2$$

$$BC^2 = b^2k^2$$

$$BC = bk$$

$$\begin{aligned}
 \therefore \cos \theta &= \frac{BC}{AC} \\
 &= \frac{b}{\sqrt{a^2 + b^2}}
 \end{aligned}$$

$$\tan \theta = \frac{AB}{BC}$$

$$= \frac{a}{b}$$

28. To prove

$$\cos^6 A + \sin^6 A = 1 - 3\sin^2 A \cos^2 A$$

LHS

$$\cos^6 A + \sin^6 A$$

$$= (\cos^6 A)^3 + (\sin^6 A)^3$$

$$= (\cos^2 A + \sin^2 A) [(\cos^2 A)^2 - \cos^2 A \times \sin^2 A + (\sin^2 A)^2]$$

$$(\text{Because, } a^3 + b^3 = (a + b)(a^2 - ab + b^2))$$

$$= (\cos^2 A)^2 - \cos^2 A \times \sin^2 A + (\sin^2 A)^2$$

$$(\text{Because, } \sin^2 x + \cos^2 x = 1)$$

$$= (\cos^2 A)^2 - \cos^2 A \times \sin^2 A + (\sin^2 A)^2 + 2\cos^2 A \sin^2 A - 2\cos^2 A \sin^2 A$$

$$= (\cos^2 A + \sin^2 A)^2 - 3\cos^2 A \sin^2 A$$

$$(\text{Because, } a^2 + 2ab + b^2 = (a + b)^2)$$

$$= 1 - 3\cos^2 A \sin^2 A$$

= RHS

Hence, proved.

29. $5 \tan x = 4$

$$\tan x = \frac{4}{5}$$

$$\text{Consider } \frac{5\sin x - 3\cos x}{5\sin x + 2\cos x}$$

$$\begin{aligned}
 & \frac{5\sin x - 3\cos x}{\cos x} \\
 &= \frac{5\sin x + 2\cos x}{5\sin x + 2\cos x} \\
 & \quad \cos x
 \end{aligned}$$

$$= \frac{5\tan x - 3}{5\tan x + 2}$$

$$= \frac{5\left(\frac{4}{5}\right) - 3}{5\left(\frac{4}{5}\right) + 2}$$

$$= \frac{4 - 3}{4 + 2}$$

$$= \frac{1}{6}$$

Section D

$$30. \sec\theta = x + \frac{1}{4x}$$

We know that $\sec^2\theta - \tan^2\theta = 1$

$$\tan^2\theta = \sec^2\theta - 1$$

$$= \left(x + \frac{1}{4x}\right)^2 - 1$$

$$= x^2 + \left(\frac{1}{4x}\right)^2 + 2x\left(\frac{1}{4x}\right) - 1$$

$$= x^2 + \left(\frac{1}{4x}\right)^2 - \frac{1}{2}$$

$$= \left(x - \frac{1}{4x}\right)^2$$

$$\text{So, } \tan^2\theta = \left(x - \frac{1}{4x}\right)^2$$

$$\therefore \tan\theta = \pm \left(x - \frac{1}{4x}\right)$$

Case 1

$$\sec\theta = x + \frac{1}{4x}$$

$$\tan\theta = x - \frac{1}{4x}$$

So,

$$\sec\theta + \tan\theta$$

$$= 2x$$

$$\therefore \sec\theta + \tan\theta = 2x + \frac{1}{2x}$$

$$31. \cot\theta = \frac{15}{8}$$

$$= \frac{BC}{AB}$$

Case 2

$$\sec\theta = x + \frac{1}{4x}$$

$$\tan\theta = -\left(x - \frac{1}{4x}\right)$$

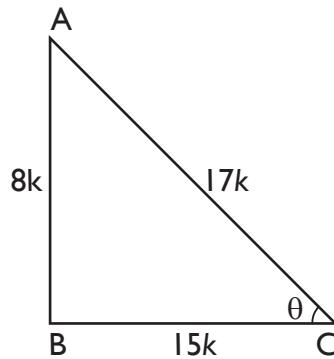
So,

$$\sec\theta + \tan\theta$$

$$= x + \frac{1}{4x} - x + \frac{1}{4x}$$

$$= \frac{2}{4x}$$

$$= \frac{1}{2x}$$



Let BC = 15k

$$AB = 8k$$

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$= 64k^2 + 225k^2$$

$$= 289k^2$$

$$\therefore AC = 17k$$

$$\begin{aligned} \text{(i) Consider } & \frac{(2 + 2\sin\theta)(1 - \sin\theta)}{(1 + \cos\theta)(2 - 2\cos\theta)} \\ &= \frac{2(1 + \sin\theta)(1 - \sin\theta)}{2(1 + \cos\theta)(1 - \cos\theta)} \end{aligned}$$

$$\begin{aligned} &= \frac{1 - \sin^2\theta}{1 - \cos^2\theta} \\ &= \frac{\cos^2\theta}{\sin^2\theta} \\ &= \cot^2\theta \\ &= \frac{225}{64} \end{aligned}$$

$$\begin{aligned} \text{(ii) } & \frac{\cosec^2\theta - \cot^2\theta}{\cosec^2\theta + \cot^2\theta} \\ &= \frac{1}{\cosec^2\theta + \cot^2\theta} \\ &= \frac{1}{\left(\frac{17}{8}\right)^2 + \left(\frac{15}{8}\right)^2} \end{aligned}$$

$$= \frac{64}{289 + 225}$$

$$= \frac{64}{514}$$

$$= \frac{32}{257}$$

$$\begin{aligned}
 \text{(iii)} \quad & \sec^2\theta + \tan^2\theta \\
 &= \left(\frac{17}{15}\right)^2 + \left(\frac{8}{15}\right)^2 \\
 &= \frac{289}{225} + \frac{64}{225} \\
 &= \frac{353}{225}
 \end{aligned}$$

$$32. \quad \tan A = n \tan B$$

$$\Rightarrow \frac{\sin A}{\cos A} = n \frac{\sin B}{\cos B} \quad \text{(i)}$$

$$\text{Also, } \sin A = m \sin B$$

$$\Rightarrow \frac{\sin A}{\sin B} = m \quad \text{(ii)}$$

From (i), (ii), we get

$$\begin{aligned}
 m &= n \frac{\cos A}{\cos B} \\
 \Rightarrow \cos B &= \frac{n}{m} \cos A \quad \text{(iii)}
 \end{aligned}$$

On putting value of $\sin B$ and $\cos B$ from (ii) and (iii) in $\cos^2 B + \sin^2 B = 1$, we get

$$\frac{n^2}{m^2} \cos^2 A + \frac{1}{m^2} \sin^2 A = 1$$

$$n^2 \cos^2 A + \sin^2 A = m^2$$

$$n^2 \cos^2 A + 1 - \cos^2 A = m^2$$

$$n^2 \cos^2 A - \cos^2 A = m^2 - 1$$

$$(n^2 - 1) \cos^2 A = m^2 - 1$$

$$\therefore \cos^2 A = \frac{m^2 - 1}{n^2 - 1}$$

$$33. \quad \cosec \theta - \sin \theta = 1$$

$$\sec \theta - \cos \theta = m$$

Consider

$$1^2 - m^2 (1^2 + m^2 + 3)$$

$$= (\cosec \theta - \sin \theta)^2 (\sec \theta - \cos \theta)^2 [(\cosec \theta - \sin \theta)^2 (\sec \theta - \cos \theta)^2] + 3$$

$$\begin{aligned}
 &= \left(\frac{1}{\sin \theta} - \sin \theta \right)^2 \left(\frac{1}{\cos \theta} - \cos \theta \right)^2 \\
 &\quad \left[\left(\frac{1}{\sin \theta} - \sin \theta \right)^2 + \left(\frac{1}{\cos \theta} - \cos \theta \right)^2 \right] + 3 \\
 &= \left(\frac{1 - \sin^2 \theta}{\sin \theta} \right)^2 = \left(\frac{1 - \cos^2 \theta}{\cos \theta} \right)^2 \\
 &\quad \left[\left(\frac{1 - \sin^2 \theta}{\sin \theta} \right)^2 + \left(\frac{1 - \cos^2 \theta}{\cos \theta} \right)^2 + 3 \right] \\
 &= \left(\frac{\cos^2 \theta}{\sin \theta} \right)^2 \left(\frac{\sin^2 \theta}{\cos \theta} \right)^2 \left[\left(\frac{\cos^2 \theta}{\sin \theta} \right)^2 + \left(\frac{\sin^2 \theta}{\cos \theta} \right)^2 + 3 \right] \\
 &= \frac{\cos^4 \theta}{\sin^2 \theta} \frac{\sin^4 \theta}{\cos^2 \theta} \left[\frac{\cos^4 \theta}{\sin^2 \theta} + \frac{\sin^4 \theta}{\cos^2 \theta} + 3 \right] \\
 &= \sin^2 \theta \cos^2 \theta \left[\frac{\cos^6 \theta + \sin^6 \theta + 3 \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \right] \\
 &= (\sin^2 \theta)^3 + (\cos^2 \theta)^3 + 3 \sin^2 \theta \cos^2 \theta \\
 &= (\sin^2 \theta + \cos^2 \theta) (\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta) \\
 &\quad + 3 \sin^2 \theta \cos^2 \theta \\
 &= \sin^4 \theta + \cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta \\
 &= (\sin^2 \theta + \cos^2 \theta)^2 \\
 &= 1^2 \\
 &= 1
 \end{aligned}$$

$$34. \quad \frac{\cos \alpha}{\cos \beta} = m \text{ and } \frac{\cos \alpha}{\sin \beta} = n$$

Consider

$$(m^2 + n^2) \cos^2 \beta$$

$$\begin{aligned}
 &= \left(\frac{\cos^2 \alpha}{\cos^2 \beta} + \frac{\cos^2 \alpha}{\sin^2 \beta} \right) \cos^2 \beta \\
 &= \left(\frac{\cos^2 \alpha \sin^2 \beta + \cos^2 \beta \cos^2 \alpha}{\cos^2 \beta \sin^2 \beta} \right) \cos^2 \beta \\
 &= \frac{\cos^2 \alpha \sin^2 \beta + \cos^2 \beta \cos^2 \alpha}{\sin^2 \beta}
 \end{aligned}$$

$$= \left(\frac{\cos \alpha}{\sin \beta} \right)^2$$

$$= n^2$$

35. $(\sec A + \tan A)(\sec B + \tan B)(\sec C + \tan C)$
 $= (\sec A - \tan A)(\sec B - \tan B)(\sec C - \tan C)$ (i)
 On multiplying both sides of (i) by $(\sec A - \tan A)(\sec B - \tan B)(\sec C - \tan C)$, we get
 $(\sec^2 A - \tan^2 A)(\sec^2 B - \tan^2 B)(\sec^2 C - \tan^2 C)$
 $= (\sec A - \tan A)^2 (\sec B - \tan B)^2 (\sec C - \tan C)^2$
 $\Rightarrow 1 = (\sec A - \tan A)^2 (\sec B - \tan B)^2 (\sec C - \tan C)^2$
 $\Rightarrow (\sec A - \tan A)^2 (\sec B - \tan B)^2 (\sec C - \tan C)^2 = \pm 1$
 Again, Multiplying both sides of (i) by
 $(\sec A + \tan A)(\sec B + \tan B)(\sec C + \tan C)$
 we get
 $(\sec A + \tan A)^2 (\sec B + \tan B)^2 (\sec C + \tan C)^2$
 $= (\sec^2 A - \tan^2 A)(\sec^2 B - \tan^2 B)(\sec^2 C - \tan^2 C)$
 $= 1$
 $\therefore (\sec A + \tan A)(\sec B + \tan B)(\sec C + \tan C) = \pm 1$

36. $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$
 $\Rightarrow x \sin^3 \theta + \cos^2 \theta (y \cos \theta) = \sin \theta \cos \theta$
 $\Rightarrow x \sin^3 \theta + \cos^2 \theta x \sin \theta = \sin \theta \cos \theta$
 $\quad [\because y \cos \theta = x \sin \theta]$
 $\Rightarrow x \sin \theta + (\sin^2 \theta + \cos^2 \theta) = \sin \theta \cos \theta$
 $\Rightarrow x \sin \theta = \sin \theta \cos \theta$
 $\Rightarrow x = \cos \theta$
 $\therefore y = \frac{x \sin \theta}{\cos \theta} = \frac{\cos \theta \sin \theta}{\cos \theta} = \sin \theta$
 Also, we know that
 $\sin^2 \theta + \cos^2 \theta = 1$
 $\Rightarrow y^2 + x^2 = 1$

$$\Rightarrow x^2 + y^2 = 1$$

37. $\cosec \theta - \sin \theta = m$

$$\Rightarrow \frac{1}{\sin \theta} - \sin \theta = m$$

$$\Rightarrow \frac{1 - \sin^2 \theta}{\sin \theta} = m$$

$$\Rightarrow \frac{\cos^2 \theta}{\sin \theta} = m$$

Also, $\sec \theta - = n$

$$\frac{1}{\cos \theta} - \cos \theta = n$$

$$\frac{1 - \cos^2 \theta}{\cos \theta} = n$$

$$\frac{\sin^2 \theta}{\cos \theta} = n$$

So,

$$\begin{aligned} \text{LHS} &= (m^2 n)^{\frac{2}{3}} + (mn^2)^{\frac{2}{3}} \\ &= \left(\frac{\cos^4 \theta}{\sin^2 \theta} \frac{\sin^2 \theta}{\cos \theta} \right)^{\frac{2}{3}} + \left(\frac{\cos^2 \theta}{\sin \theta} \frac{\sin^4 \theta}{\cos^4 \theta} \right)^{\frac{2}{3}} \\ &= (\cos^3 \theta)^{\frac{2}{3}} + (\sin^3 \theta)^{\frac{2}{3}} \\ &= \cos^2 \theta + \sin^2 \theta \\ &= 1 \end{aligned}$$

38. $a \sec \theta + b \tan \theta + c = 0$

$$p \sec \theta + q \tan \theta + r = 0$$

To prove:

$$(br - qc)^2 - (pc - ar)^2 = (aq - pb)^2$$

Consider

$$\begin{aligned} &(br - qc)^2 - (pc - ar)^2 \\ &= [b(-p \sec \theta - q \tan \theta) + q(a \sec \theta + b \tan \theta)]^2 - [p(-a \sec \theta - b \tan \theta) + a(p \sec \theta + q \tan \theta)]^2 \end{aligned}$$

$$\begin{aligned}
&= [-bp \sec \theta - bq \tan \theta + aq \sec \theta + bq \tan \theta \\
&\quad]^2 - [-ap \sec \theta - bp \tan \theta + ap \sec \theta + aq \\
&\quad \tan \theta]^2 \\
&= [\sec \theta (aq - bp)]^2 - [(aq - bp) \tan \theta]^2 \\
&= (aq - bp)^2 (\sec^2 \theta - \tan^2 \theta) \\
&= (aq - bp)^2
\end{aligned}$$

39. $\tan^2 \theta = l - a^2$

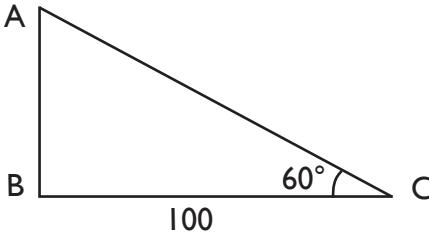
Consider

$$\begin{aligned}
&(\sec \theta + \tan^3 \theta \cosec \theta) \\
&= \sqrt{l + \tan^2 \theta} + \tan^2 \theta \tan \theta \cosec \theta \\
&= \sqrt{l + \tan^2 \theta} + \tan^2 \theta \tan \theta \sqrt{l + \cot^2 \theta}
\end{aligned}$$

$$\begin{aligned}
&= \sqrt{l + l - a^2} + (l - a^2) \sqrt{l - a^2} \sqrt{l + \frac{l}{\tan^2 \theta}} \\
&= \sqrt{2 - a^2} + (l - a^2) (\sqrt{l - a^2}) \sqrt{l + \frac{l}{l - a^2}} \\
&= \sqrt{2 - a^2} + (l - a^2) \frac{\sqrt{l - a^2}}{\sqrt{l - a^2}} \sqrt{2 - a^2} \\
&= \sqrt{2 - a^2} + (l - a^2) \sqrt{2 - a^2} \\
&= \sqrt{2 - a^2} + (l + l - a^2) \\
&= \sqrt{2 - a^2} + (2 - a^2) \\
&= (2 - a^2)^{\frac{2}{3}}
\end{aligned}$$

MULTIPLE CHOICE QUESTIONS

1.



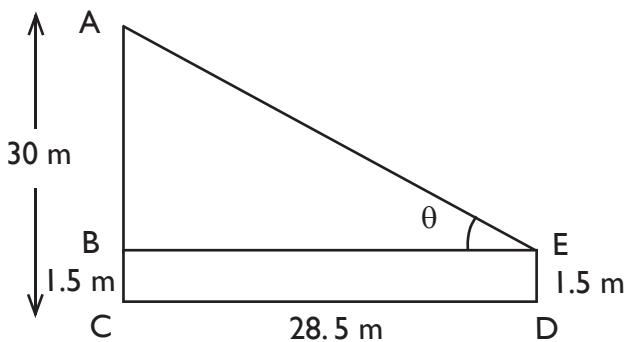
$$\tan 60^\circ = \frac{AB}{BC}$$

$$\sqrt{3} = \frac{AB}{100}$$

$$\therefore AB = 100\sqrt{3} \text{ m}$$

Option (d)

2.



$$AB = AC - BC$$

$$= 30 - 1.5$$

$$= 28.5 \text{ m}$$

$$BE = CD = 28.5 \text{ m}$$

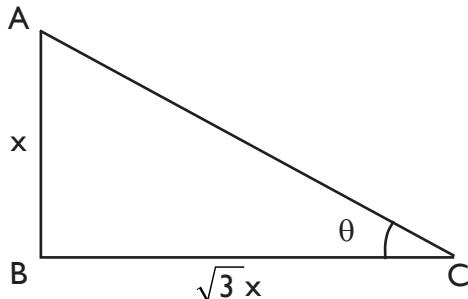
In $\triangle ABE$,

$$\tan \theta = \frac{AB}{BE} = \frac{28.5}{28.5} = 1$$

$$\Rightarrow \theta = 45^\circ$$

Option (c)

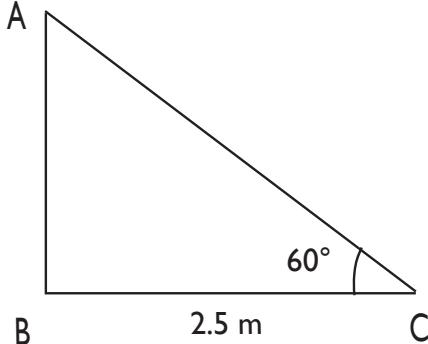
3.



$$\begin{aligned} \tan \theta &= \frac{AB}{BC} = \frac{x}{\sqrt{3}x} = \frac{1}{\sqrt{3}} \\ \theta &= 30^\circ \end{aligned}$$

Option (d)

4.



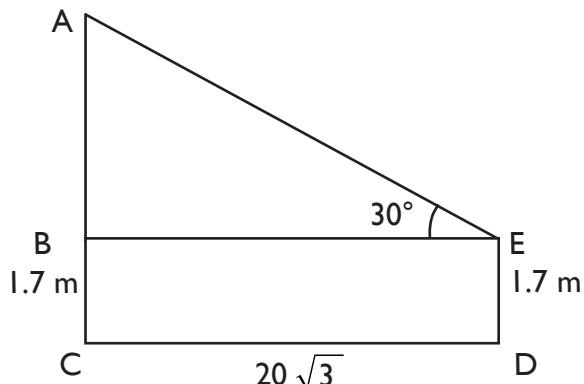
$$\cos 60^\circ = \frac{BC}{AC}$$

$$\frac{1}{2} = \frac{2.5}{AC}$$

$$AC = 5 \text{ m}$$

Option (b)

5.



$$\text{In } \triangle ABE, BE = CD = 20\sqrt{3} \text{ m}$$

$$\tan 30^\circ = \frac{AB}{BE}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{20\sqrt{3}}$$

$$\therefore AB = 20 \text{ m}$$

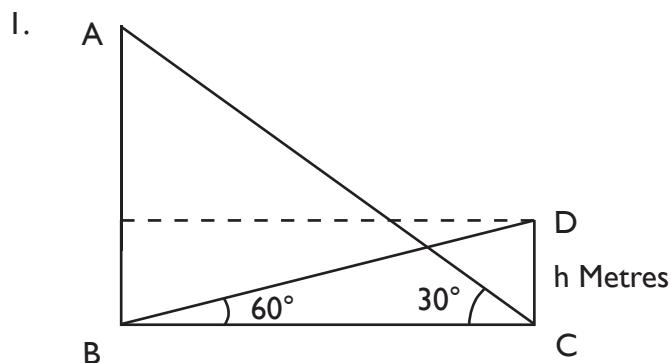
$$\text{So, } AC = AB + BC = 20 + 1.7$$

$$= 21.7 \text{ m}$$

Option (a)

WORKSHEET 1

Section A



Let AB denotes the tower.

In $\triangle ABC$,

$$\tan 60^\circ = \frac{CD}{BC}$$

$$\sqrt{3} = \frac{h}{BC}$$

$$BC = \frac{h}{\sqrt{3}} \text{ Metre}$$

In $\triangle ABC$,

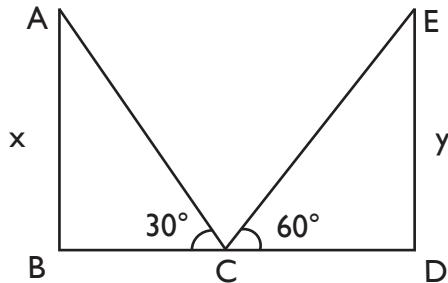
$$\tan 30^\circ = \frac{AB}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{h}$$

$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{h}$$

$$AB = \frac{h}{3} \text{ Metre}$$

2.



Let AB and DE denote two towers

In $\triangle ABC$,

$$\tan 30^\circ = \frac{AB}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{x}{BC}$$

$$\Rightarrow BC = \sqrt{3}$$

In $\triangle CDE$,

$$\tan 60^\circ = \frac{DE}{CD}$$

$$\sqrt{3} = \frac{y}{CD}$$

$$CD = \frac{y}{\sqrt{3}}$$

$$\text{As } BC = CD$$

$$\therefore \sqrt{3}x = \frac{y}{\sqrt{3}}$$

$$3x = y$$

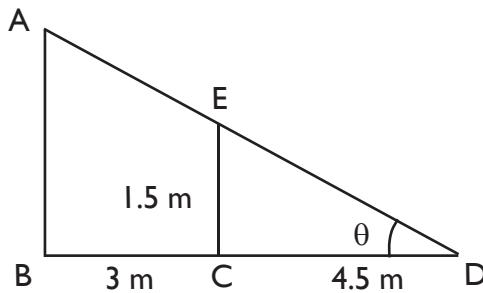
$$\Rightarrow x : y = 1 : 3$$

3. In $\triangle ABC$,

$$\tan C = \frac{AB}{BC} = \frac{20}{20\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\therefore C = 30^\circ$$

4.



Let CE denotes the boy and AB denotes a lamp-post.

In $\triangle DCE$,

$$\tan \theta = \frac{CE}{CD} = \frac{1.5}{45} = \frac{1}{3}$$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BD}$$

$$\frac{1}{3} = \frac{AB}{7.5}$$

$$\therefore AB = 2.5 \text{ m}$$

5. In $\triangle ABC$,

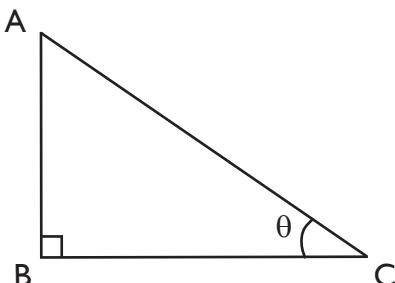
$$\sin 45^\circ = \frac{BC}{AC}$$

$$\frac{1}{\sqrt{2}} = \frac{BC}{150}$$

$$BC = \frac{150}{\sqrt{2}}$$

$$= 75\sqrt{2} \text{ m}$$

6.



Let AB denotes the vertical role and BC denotes the shadow of the role.

Let $AB = BC = x$

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC} = \frac{x}{x} = 1$$

$$\therefore \theta = 45^\circ$$

7. In $\triangle BAC$,

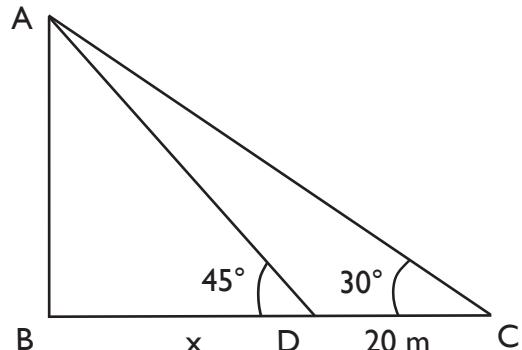
$$\tan \theta = \frac{AB}{AC}$$

$$= \frac{5a\sqrt{3}}{5a}$$

$$= \sqrt{3}$$

$$\theta = 60^\circ$$

8.



Let AB denotes the chimney.

Let $BD = x$ metre

In $\triangle ABC$,

$$\tan 30^\circ = \frac{AB}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{x + 20}$$

$$AB = \frac{1}{\sqrt{3}}(x + 20) \quad (i)$$

In $\triangle ABC$,

$$\tan 45^\circ = \frac{AB}{BD}$$

$$1 = \frac{AB}{x}$$

$$AB = x \quad (ii)$$

From (i) and (ii),

$$AB = x = \frac{1}{\sqrt{3}}(x + 20)$$

$$\sqrt{3}x - x = 20$$

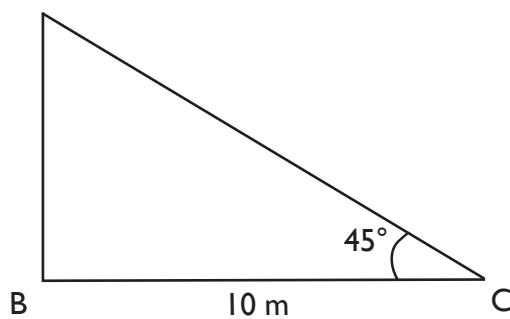
$$x = \frac{20}{\sqrt{3} - 1}$$

$$= \frac{20}{2}(\sqrt{3} + 1)$$

$$x = 10(\sqrt{3} + 1)$$

$$\therefore AB = x = 10(\sqrt{3} + 1)$$

9.



Let AB denotes the tower and BC denotes the shadow

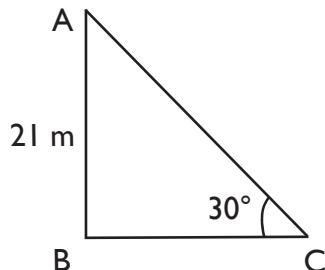
In $\triangle ABC$,

$$\tan 45^\circ = \frac{AB}{BC}$$

$$1 = \frac{AB}{10}$$

$$AB = 10 \text{ m}$$

10.



Let AC denotes the string of kite.

In $\triangle ABC$,

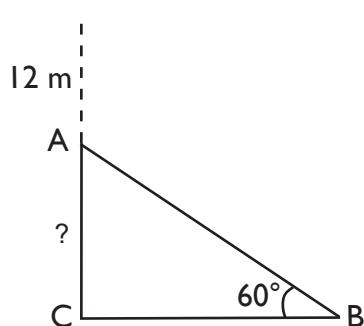
$$\sin 30^\circ = \frac{AB}{AC}$$

$$\frac{1}{2} = \frac{21}{AC}$$

$$AC = 42 \text{ m}$$

Section B

11.



Let AC be x and AB be $12 - x$

$$\therefore \sin 60^\circ = \frac{AC}{AB}$$

$$\frac{\sqrt{3}}{2} = \frac{x}{12 - x}$$

$$12\sqrt{3} - \sqrt{3}x = 2x$$

$$12 \times 1.73 = 2x + 1.73x$$

$$20.76 = 3.73x$$

$$\frac{2076 \times 100}{373 \times 100} = x$$

$$5.6 \text{ m} = x = AC$$

12. Let the aeroplane be at B and let the two ships be at C and D such that their angles of depression from B are 60° and 30° respectively.

In $\triangle CAB$, we have,

$$\tan 60^\circ = \frac{AB}{CA}$$

$$\Rightarrow \sqrt{3} = \frac{1200}{x}$$

$$\Rightarrow x = \frac{1200}{\sqrt{3}} = 400\sqrt{3}$$

In $\triangle BAD$, we have

$$\tan 30^\circ = \frac{AB}{AD}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{1200}{x + y}$$

$$\Rightarrow x + y = 1200\sqrt{3}$$

$$\Rightarrow y = 1200\sqrt{3} - x$$

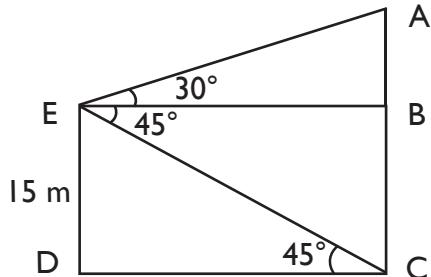
$$\Rightarrow y = 1200\sqrt{3} - 400\sqrt{3}$$

$$= 800\sqrt{3} = 800 \times 1.732$$

$$= 1385.6$$

Hence, the distance between the two ships is 1385.6 metres.

13.



Let the window be at point E and AC be the house.

Let

To find : AC

In $\triangle CDE$,

$$\tan 45^\circ = \frac{DE}{CD}$$

$$1 = \frac{15}{CD}$$

$$\therefore CD = 15 \text{ m}$$

$$\therefore BE = CD = 15 \text{ m}$$

In $\triangle ABE$,

$$\tan 30^\circ = \frac{AB}{BE}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{15}$$

$$\therefore AB = \frac{15}{\sqrt{3}} = 5\sqrt{3} \text{ m}$$

$$\text{Also, } BC = DE = 15 \text{ m}$$

$$\therefore AC = AB = BC$$

$$AC = 5\sqrt{3} + 15$$

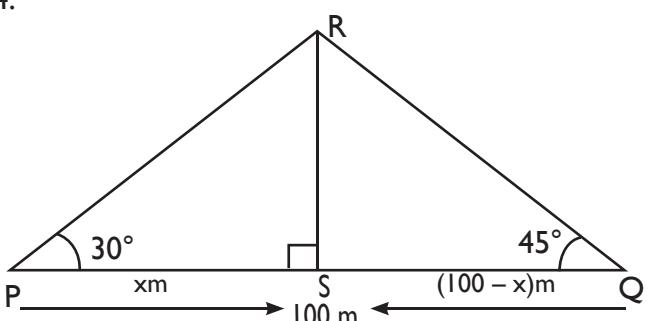
$$= 5(\sqrt{3} + 3) \text{ m}$$

$$= 5(1.732 + 3) \text{ m}$$

$$= 5 \times 4.732$$

$$= 23.66 \text{ m}$$

14.



Let AB denotes the tree .

Step 1:

Given Data:

In rt. $\triangle PRS$,

$$x = RS \cot 30^\circ$$

$$x = RS \sqrt{3}$$

Step 2:

$$x = \sqrt{3} RS \dots\dots\dots (i)$$

In rt. $\triangle RSQ$,

$$SQ = RS \cot 45^\circ$$

Step 3:

$$(100 - x) = RS$$

$$x = 100 - RS \dots\dots\dots (ii)$$

Step 4:

Equating (i) and Equation(ii) we have:

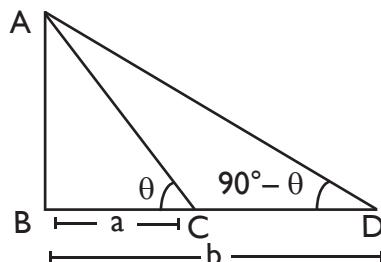
$$RS = 100 - RS$$

Step 5:

$$2.73 RS = 100$$

$$RS = 36.63 \text{ m}$$

15.



Let AB denotes the tree .

To prove : $AB = \sqrt{ab}$ metres

In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\tan \theta = \frac{AB}{a}$$

$$\therefore AB = a \tan \theta \quad (i)$$

In $\triangle ABD$,

$$\tan(90 - \theta) = \frac{AB}{BD}$$

$$\cot \theta = \frac{AB}{BD}$$

$$\therefore AB = b \cot \theta \quad (ii)$$

From (i) and (ii)

$$AB = a \tan \theta = b \cot \theta$$

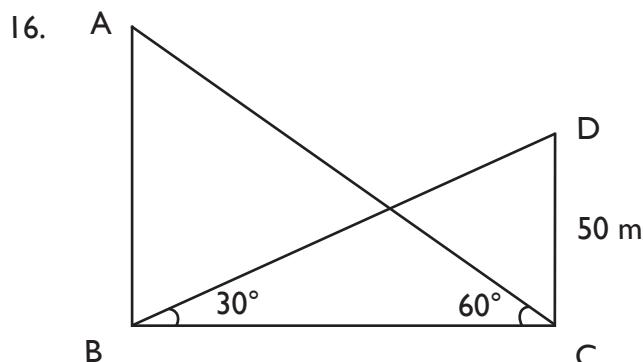
$$\tan^2 \theta = \frac{b}{a}$$

$$\therefore \tan \theta = \sqrt{\frac{b}{a}}$$

$$\text{So, } AB = a \tan \theta$$

$$= a \sqrt{\frac{b}{a}}$$

$$= \sqrt{ab} \text{ metres}$$



Let AB denotes the hill and CD denotes the tower such that $CD = 50 \text{ m}$

In $\triangle BCD$,

$$\tan 30^\circ = \frac{CD}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{50}{BC}$$

$$\therefore BC = 50\sqrt{3} \text{ m}$$

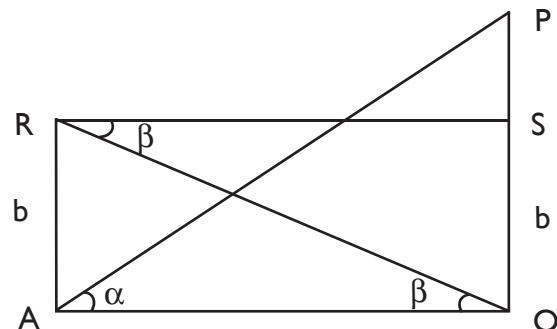
In $\triangle ABC$,

$$\tan 60^\circ = \frac{AB}{BC}$$

$$\sqrt{3} = \frac{AB}{50\sqrt{3}}$$

$$\therefore AB = 150 \text{ m}$$

17.



Let PQ denotes the tower

To prove : $PQ = b \tan \alpha \cot \beta$

$$QS = AR = b \text{ ft}$$

In $\triangle RAQ$,

$$\tan \beta = \frac{AR}{AQ}$$

$$\tan \beta = \frac{b}{AQ}$$

$$AQ = b \cot \beta$$

In $\triangle PQA$,

$$\tan \alpha = \frac{PR}{AQ}$$

$$\tan \alpha = \frac{PS + QS}{b \cos \beta}$$

$$\tan \alpha = \frac{PS + b}{b \cos \beta}$$

$$\Rightarrow PS + b = b \tan \alpha \cot \beta$$

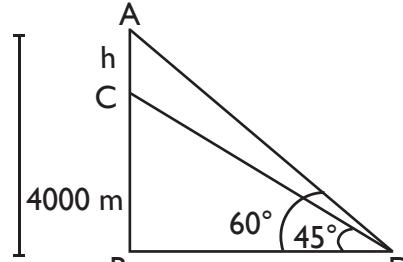
$$\Rightarrow PS = b \tan \alpha \cot \beta - b$$

$$\text{So, } PQ = PS + SQ$$

$$= b \tan \alpha \cot \beta - b + b$$

$$= b \tan \alpha \cot \beta$$

18.



Height of first Airplane = AB = 4000m

Height of another lane = BC

The angles of elevation of two planes from the same point on the ground are 60° and 45° . i.e. $\angle ADB = 60^\circ$ and $\angle CDB = 45^\circ$

Let AC be h

$$CB = AB - AC = 4000 - h$$

In $\triangle ABD$

$$\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}$$

$$\tan 60^\circ = \frac{AB}{BD}$$

$$\sqrt{3} = \frac{4000}{BD}$$

$$BD = \frac{4000}{\sqrt{3}}$$

$$BD = 2309.401$$

In $\triangle CBD$

$$\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}$$

$$\tan 45^\circ = \frac{CB}{BD}$$

$$1 = \frac{4000 - h}{2309.401}$$

$$2309.401 = 4000 - h$$

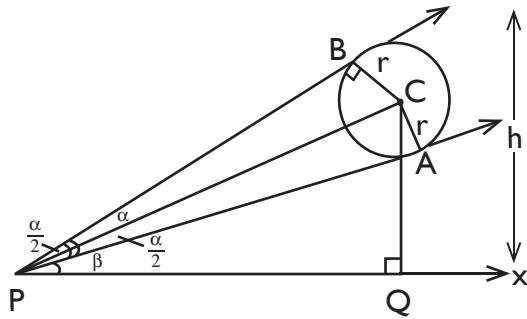
$$h = 4000 - 2309.401$$

$$h = 1690.599$$

Hence, the vertical distance between the aeroplane at that instant is 1690.599 m.

Section C

19. Let P be the eye of observer. Let PA and PB are tangents to the round balloon.



PX is the horizontal line and $CQ \perp PQ$. It is given that $\angle APB = \alpha$

$$\therefore \angle CPA = \angle CPB = \frac{\alpha}{2}$$

and $\angle CPA = \beta$

Let height of the centre C be h m and $CA = CB = r$

In right triangle CBP, we have

$$\sin\left(\frac{\alpha}{2}\right) = \frac{BC}{CP}$$

$$\Rightarrow \sin\left(\frac{\alpha}{2}\right) = \frac{r}{CP}$$

$$\Rightarrow CP = \frac{r}{\sin\left(\frac{\alpha}{2}\right)}$$

$$\Rightarrow CP = r \cosec \frac{\alpha}{2}$$

In right triangle CPQ, we have

$$\sin \beta = \frac{CQ}{CP}$$

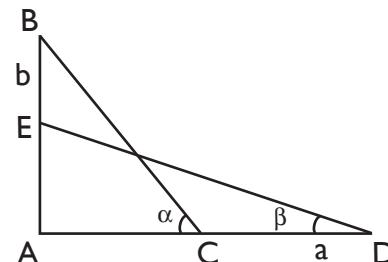
$$\Rightarrow CQ = CP \sin \beta$$

$$\Rightarrow CQ = r \cosec \frac{\alpha}{2} \sin \beta$$

Hence, the height of the centre

$$= r \sin \beta \cosec \frac{\alpha}{2}$$

20.



Let the kite be at point A such that AC is the string of kite.

Let BC be the ladder which slides down a distance b on the wall.

In right triangle ABC, we have

$$\sin \alpha = \frac{AB}{BC} = \frac{AE + EB}{BC}$$

$$\sin \alpha = \frac{AE + b}{BC}$$

But, $AE = \sin \beta \times ED$ (In $\triangle AED$)

So, replacing AE by $ED \sin \beta$, we get

$$\sin \alpha = \frac{ED \sin \beta + b}{BC}$$

$$\Rightarrow b = BC \sin \alpha - ED \sin \beta$$

As, BC and ED both represent the same ladder.

$BC = ED$. (length of ladder does not change)

$$\Rightarrow BC \sin \alpha - BC \sin \beta = b$$

$$\Rightarrow BC (\sin \alpha - \sin \beta) = b \dots (i)$$

Similarly, in right triangle AED, we have

$$\cos \beta = \frac{AD}{ED} = \frac{AC + CD}{ED}$$

$$\cos \beta = \frac{AC + a}{ED}$$

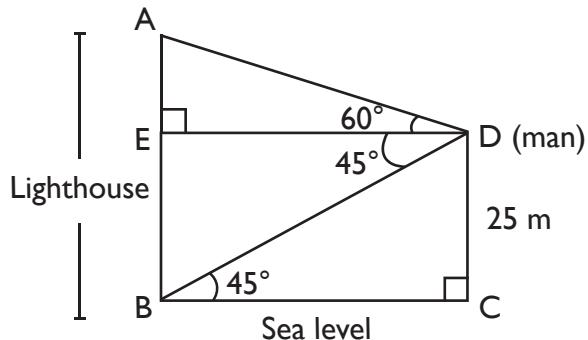
But, $AC = BC \cos \alpha$ (In $\triangle ABC$)

So, by replacing AC by $BC \cos \alpha$, we get $ED \cos \beta = BC \cos \alpha + a$ $BC (\cos \alpha - \cos \beta) = a$ $\therefore ED = BC$... (ii) Dividing (ii) by (i), we get

$$\frac{a}{b} = \frac{\cos \beta - \cos \alpha}{\sin \alpha - \sin \beta}$$

$$\frac{a}{b} = \frac{\cos \alpha - \cos \beta}{\sin \beta - \sin \alpha}$$

21.



Let AB represents the light house (A shows its top), BC represents the sea level and D represents the position of the man,

By the below diagram,

In triangle DCB,

$$\tan 45^\circ = \frac{CD}{BC}$$

$$1 = \frac{25}{BC} \Rightarrow BC = 25 \text{ m}$$

$$\Rightarrow ED = 25 \text{ meters,}$$

Now, in triangle DAE,

$$\tan 60^\circ = \frac{AE}{ED}$$

$$\sqrt{3} = \frac{AE}{25}$$

$$\Rightarrow AE = 25\sqrt{3}$$

Hence, the height of lighthouse,

$$AB = AE + EB$$

$$= 25\sqrt{3} + 25$$

$$= 25(\sqrt{3} + 1) \text{ meters.}$$

22.

Let the distance between the nearer kilometre stone and the hill be 'a' km. So, the distance between the farther kilometre stone and the hill is 'l + x' km since both are on the same side of the hill.

In triangle APB,

$$\tan 45^\circ = \frac{h}{x}$$

$$\Rightarrow l = \frac{h}{x}$$

$$\Rightarrow h = x$$

In triangle AQB,

$$\tan 30^\circ = \frac{h}{l+x}$$

$$\Rightarrow \frac{l}{\sqrt{3}} = \frac{h}{l+x}$$

$$\Rightarrow l+x = \sqrt{3}h$$

From equation 1,

$$l+h = \sqrt{3}h \Rightarrow l = \sqrt{3}h - h$$

$$\Rightarrow h = \frac{l}{\sqrt{3}-1}$$

$$\Rightarrow h = 1.365 \text{ km}$$

Hence, option A is correct.

Section D

23. Let A and B be the two positions of the ship. Let d be the distance travelled by the ship during the period of observation i.e. $AB = d$ metres.

Let the observer be at O, the top of the lighthouse PO.

It is given that $PO = 100 \text{ m}$ and the angle of depression from O of A and B are 30° and 45° respectively.

$$\therefore \angle OAP = 30^\circ \text{ and } \angle OBP = 45^\circ$$

In $\triangle OPB$, we have

$$\tan 45^\circ = \frac{OP}{BP}$$

$$\Rightarrow l = \frac{100}{BP}$$

$$\Rightarrow BP = 100 \text{ m}$$

In $\triangle OPA$, we have

$$\Rightarrow \tan 30^\circ = \frac{OP}{AP}$$

$$\Rightarrow \frac{l}{\sqrt{3}} = \frac{100}{d+BP}$$

$$\Rightarrow d + BP = 100\sqrt{3}$$

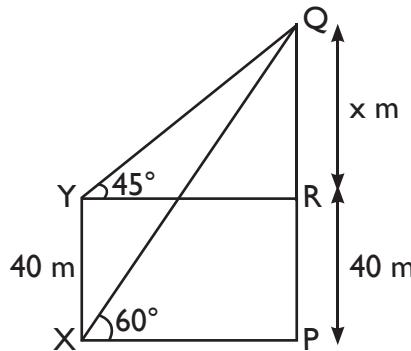
$$\Rightarrow d + BP = 100\sqrt{3}$$

$$\Rightarrow d = 100\sqrt{3} - 100$$

$$\Rightarrow d = 100(\sqrt{3} - 1) = 100(1.732 - 1) = 73.2 \text{ m.}$$

Hence, the distance travelled by the ship from A to B is 73.2 m.

24.



In $\triangle YRQ$, we have

$$\tan 45^\circ = \frac{QR}{YR}$$

$$\Rightarrow l = \frac{x}{YR}$$

$$\Rightarrow YR = x$$

$$\text{or } XP = x \quad [\text{As } YR = XP] \dots (1)$$

Now, In $\triangle XQP$, we have

$$\tan 60^\circ = \frac{PQ}{PX}$$

$$\Rightarrow \sqrt{3} = \frac{x+40}{x} \quad [\text{Using (1)}]$$

$$\Rightarrow \sqrt{3}x = x + 40$$

$$\Rightarrow x(\sqrt{3} - 1) = 40$$

$$\Rightarrow x = \frac{40}{\sqrt{3} - 1}$$

On rationalising the denominator, we get

$$x = \frac{40}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{40(\sqrt{3} + 1)}{3 - 1}$$

$$= 20(\sqrt{3} + 1) = 54.64 \text{ m}$$

So, height of the tower,

$$PQ = x + 40 = 54.64 + 40 = 94.64 \text{ metres}$$

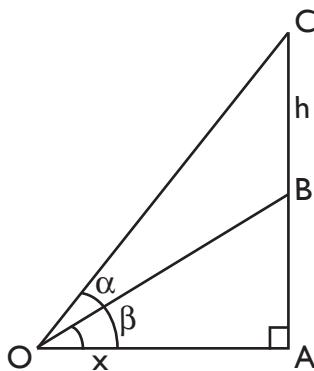
Now, In $\triangle XQP$, we have

$$\sin 60^\circ = \frac{PQ}{PX}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{94.64}{XQ}$$

$$XQ = \frac{94.64 \times 2}{\sqrt{3}} = \frac{94.64 \times 2 \times \sqrt{3}}{3} = 109.3 \text{ m}$$

25.



Let AB be the tower and BC be the flagstaff.
Let OA = x metres, AB = y metres and BC = h metres.

In right $\triangle OAB$,

$$\tan \alpha = \frac{AB}{OA}$$

$$\Rightarrow y = x \tan \alpha \text{ or } x = \frac{y}{\tan \alpha} \dots (i)$$

In right $\triangle OAC$,

$$\tan \beta = \frac{y+h}{x}$$

$$\Rightarrow x = \frac{(y+h)}{\tan \beta} \dots (ii)$$

From (i) and (ii),

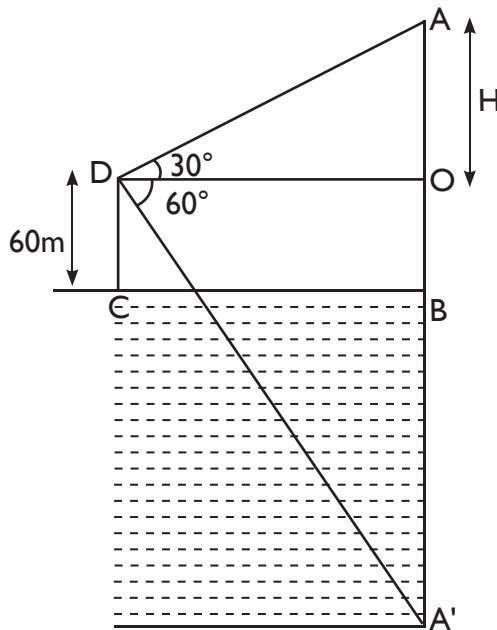
$$\frac{y}{\tan \alpha} = \frac{(y+h)}{\tan \beta}$$

$$y(\tan \beta - \tan \alpha) = h \tan \alpha$$

$$y = \frac{h \tan \alpha}{(\tan \beta - \tan \alpha)}$$

Thus, the height of the tower is $\frac{h \tan \alpha}{(\tan \beta - \tan \alpha)}$

26.



$$\text{Let } AO = H$$

$$CD = OB = 60 \text{ m}$$

$$A'B = AB = 60 + H$$

In $\triangle AOD$,

$$\tan 30^\circ = \frac{AO}{OD} = \frac{H}{OD}$$

$$H = \frac{OD}{\sqrt{3}}$$

$$OD = \sqrt{3} H$$

Now, In $\triangle A'OD$,

$$\tan 60^\circ = \frac{OA'}{OD} = \frac{OB + BA'}{OD}$$

$$\sqrt{3} = \frac{60 + 60 + H}{\sqrt{3} H} = \frac{120 + H}{\sqrt{3} H}$$

$$\Rightarrow 120 + H = 3H$$

$$\Rightarrow 2H = 120$$

$$\Rightarrow H = 60 \text{ m}$$

Thus, height of the cloud from the surface of the lake = AB + A'B = 60 + 60 = 120 m.

$$27. \frac{AB}{AD} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{h}{x+y} = \frac{l}{\sqrt{3}}$$

$$\Rightarrow x+y = \sqrt{3}h$$

$$\therefore x = (x+y-y)$$

$$= \sqrt{3}h - h$$

$$= h(\sqrt{3} - 1)$$

Now, $h(\sqrt{3} - 1)$ is covered in 12 min.

So, h will be covered in \rightarrow

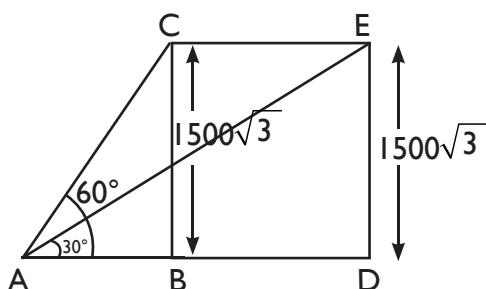
$$\left[\frac{12}{h(\sqrt{3} - 1)} \times h \right]$$

$$= \frac{12}{(\sqrt{3} - 1)} \text{ min}$$

$$= \left(\frac{1200}{73} \right) \text{ min}$$

$$= 16 \text{ min, } 23 \text{ sec}$$

28. Let A be the point of observation, C and E be the two points of the plane. It is given that after 15 seconds angle of changes from 60° to 30° .



i.e. $\angle BAC = 60^\circ$ and $\angle DAE = 30^\circ$. It is also given that height of the jet plane is $1500\sqrt{3}$ m.

$$\text{i.e. } CB = 1500\sqrt{3}$$

[Since jet plane is flying at constant height, therefore, $CB = ED = 1500\sqrt{3}$ m]

$$\tan 60^\circ = \frac{BC}{AB}$$

$$\Rightarrow \sqrt{3} = \frac{1500\sqrt{3}}{AB}$$

$$\Rightarrow AB = \frac{1500\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow AB = 1500\sqrt{3} \text{ m} \dots(i)$$

In right triangle ADE, we have

$$\tan 30^\circ = \frac{DE}{AD}$$

$$\Rightarrow \frac{l}{\sqrt{3}} = \frac{DE}{AB + BD}$$

$$\Rightarrow \frac{l}{\sqrt{3}} = \frac{1500\sqrt{3}}{AB + BD}$$

$$\Rightarrow AB + BD = 1500\sqrt{3} \times \sqrt{3}$$

$$\Rightarrow AB + BD = 4500 \dots(ii)$$

Putting the value of (i) in (ii), we get

$$1500 + BD = 4500$$

$$\Rightarrow BD = 3000$$

\therefore Distance travelled in 15 sec

$$= CE = BD = 3000 \text{ metres,}$$

$$\text{Now, speed of plane (m/s)} = \frac{3000}{15} = 200 \text{ m/s}$$

$$\text{Now, speed of plane (km/s)} = \frac{200}{1000} \times 3600 \\ = 720 \text{ km/hr}$$

WORKSHEET 2

Section A

I. Let AB be the height of the tower and C be the point.

In right $\triangle ABC$,

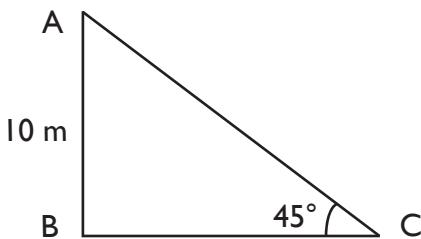
$$\tan 30^\circ = \frac{AB}{BC}$$

$$AB = BC \tan 30^\circ$$

$$AB = \frac{20}{\sqrt{3}} = 11.56 \text{ m}$$

Therefore, the height of the tower is 11.56m.

2.



Let AB and AC denotes the vertical role and wire respectively.

In $\triangle ABC$,

$$\sin 45^\circ = \frac{AB}{AC}$$

$$\frac{1}{\sqrt{2}} = \frac{10}{AC}$$

$$\therefore AC = 10\sqrt{2} \text{ m}$$

$$\begin{aligned} 3. \quad BD &= AB - AD \\ &= 6 - 2.54 \\ &= 3.46 \text{ m} \end{aligned}$$

In $\triangle CBD$,

$$\begin{aligned} \sin 60^\circ &= \frac{BD}{CD} \\ \frac{\sqrt{3}}{2} &= \frac{3.46}{CD} \\ \therefore CD &= \frac{3.46 \times 2}{\sqrt{3}} \\ &= \frac{3.46 \times 2}{1.73} \\ &= \frac{6.92}{1.732} \\ &= 4 \text{ m} \end{aligned}$$

4. Let AB = 10 = Height of Pole

And AD be the length of the wire

From $\triangle ABD$,

$$\sin 45^\circ = \frac{AB}{AD} \Rightarrow \frac{1}{\sqrt{2}} = \frac{10}{AD} \Rightarrow AD = 10\sqrt{2}$$

$$\begin{aligned} &\Rightarrow 10 \times 1.414 \text{ (Take } \sqrt{2} = 1.414) \\ &= 14.14 \text{ m} \end{aligned}$$

5. Distance from the foot of ladder to wall = 1.5cm

Angle made by ladder is 60°

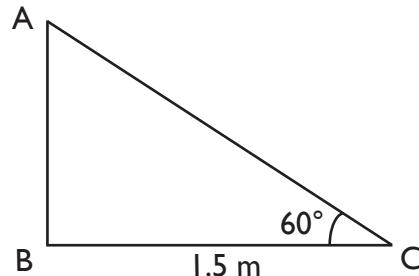
Consider $\tan 60^\circ =$

$$\frac{\text{Height of wall}}{\text{Distance from foot of ladder to wall}}$$

$$\sqrt{3} = \frac{\text{Height of wall}}{1.5}$$

$$\text{Height of wall} = 1.5\sqrt{3}$$

6.



Let AB denotes the wall and AC denotes the ladder.

In $\triangle ABC$,

$$\tan 60^\circ = \frac{AB}{BC}$$

$$\sqrt{3} = \frac{AB}{1.5}$$

$$\therefore AB = 1.5\sqrt{3} \text{ m}$$

7. Here is the position of balloon

Now, in $\triangle ABC$,

$$\sin 60^\circ = \frac{AB}{AC}$$

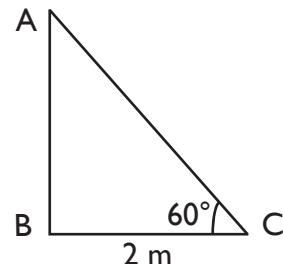
$$AB = AC \sin 60^\circ$$

$$= 215 \times \frac{\sqrt{3}}{2}$$

$$= 186 \text{ m}$$

\Rightarrow Height of the balloon from the ground is 186 m.

8.



Let AB be the wall and AC be the ladder.

We have,

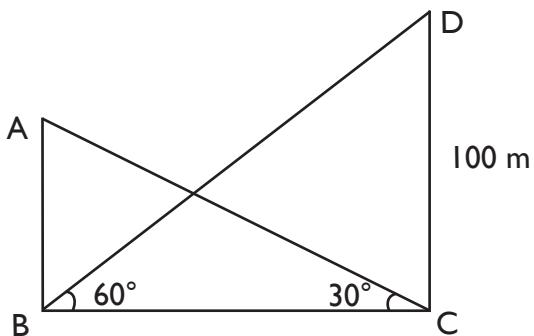
$BC = 2 \text{ m}$ and $\angle ACB = 60^\circ$

In $\triangle ABC$,

$$\begin{aligned}\cos 60^\circ &= \frac{BC}{AC} \\ \Rightarrow \frac{1}{2} &= \frac{2}{AC} \\ AC &= 4 \text{ m}\end{aligned}$$

Section B

9.



Let AB and CD denote the building and tower respectively.

In $\triangle BCD$,

$$\begin{aligned}\tan 60^\circ &= \frac{CD}{BC} \\ \sqrt{3} &= \frac{100}{BC} \\ BC &= \frac{100}{\sqrt{3}} \\ &= \frac{100}{3} \sqrt{3} \text{ m}\end{aligned}$$

In $\triangle CBA$,

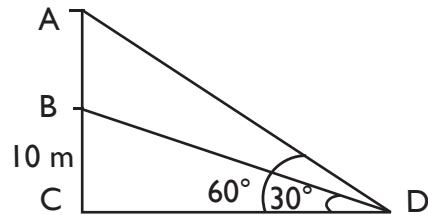
$$\begin{aligned}\tan 30^\circ &= \frac{AB}{BC} \\ \frac{1}{\sqrt{3}} &= \frac{AB}{\frac{100}{3} \sqrt{3}} \\ \frac{1}{\sqrt{3}} &= \frac{3AB}{100\sqrt{3}}\end{aligned}$$

$$3AB = 100$$

$$AB = \frac{100}{3} \text{ m}$$

So, height of building = $\frac{100}{3} \text{ m}$

10.



Let BC and AB denote the building and tower respectively.

In $\triangle BCD$

$$\begin{aligned}\tan 30^\circ &= \frac{BC}{CD} \\ \frac{1}{\sqrt{3}} &= \frac{10}{CD} \\ \therefore CD &= 10\sqrt{3} \text{ m}\end{aligned}$$

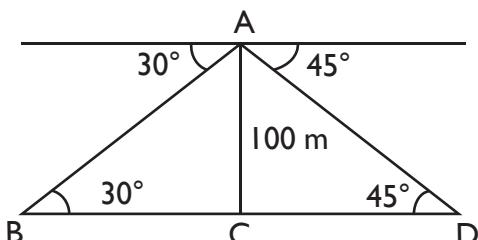
In $\triangle ACD$,

$$\begin{aligned}\tan 60^\circ &= \frac{AC}{CD} \\ \sqrt{3} &= \frac{10 + AB}{10\sqrt{3}} \\ 30 &= AB + 10 \\ AB &= 30 - 10 \\ &= 20 \text{ m}\end{aligned}$$

So, height of tower = AB

$$= 20 \text{ m}$$

11.



Let AC denote the tower and the two buses be at points B and D respectively.

To find : BD

In $\triangle ABC$,

$$\begin{aligned}\tan 30^\circ &= \frac{AC}{BC} \\ \frac{1}{\sqrt{3}} &= \frac{100}{BC} \\ \therefore BC &= 100\sqrt{3}\end{aligned}$$

In $\triangle ACD$,

$$\begin{aligned}\tan 45^\circ &= \frac{AC}{CD} \\ 1 &= \frac{100}{CD} \\ CD &= 100 \text{ m} \\ \text{So, } BD &= BC + CD \\ &= 100\sqrt{3} + 100 \\ &= 100(\sqrt{3} + 1) \text{ m}\end{aligned}$$

12. In the first figure and from triangle BCD

$$\begin{aligned}\sin 30^\circ &= \frac{BC}{BD} \\ \Rightarrow \frac{1}{2} &= \frac{1.5}{BD} \\ \Rightarrow BD &= 1.5 \times 2\end{aligned}$$

$$\Rightarrow BD = 3$$

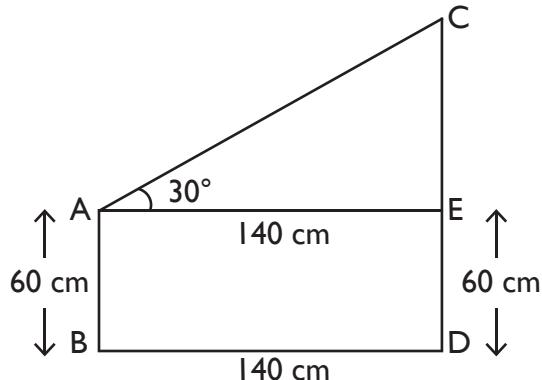
So length of slide for child below 5 years = 3m

Again in the second figure and from triangle BCD

$$\begin{aligned}\sin 60^\circ &= \frac{BC}{BD} \\ \Rightarrow \frac{\sqrt{3}}{2} &= \frac{3}{BD} \\ \Rightarrow BD &= \frac{(3 \times 2)}{\sqrt{3}} \\ \Rightarrow BD &= \frac{(\sqrt{3} \times \sqrt{3} \times 2)}{\sqrt{3}} \\ \Rightarrow BD &= 2\sqrt{3}\end{aligned}$$

So length of slide for child greater than 5 years = $2\sqrt{3}$ m

13.



Let AB be the height of second tower and CD be the height of first tower.

$$\text{Given, } BD = AE = 140 \text{ m}$$

$$\text{And } AB = DE = 60 \text{ m}$$

In $\triangle AEC$,

$$\tan 30^\circ = \frac{\text{Perpendicular}}{\text{Base}} = \frac{CE}{AE}$$

$$\tan 30^\circ = \frac{CE}{140}$$

$$\frac{1}{\sqrt{3}} = \frac{CE}{140}$$

$$CE = \frac{140}{\sqrt{3}}$$

$$CE = \frac{140 \times \sqrt{3}}{(\sqrt{3} \times \sqrt{3})}$$

[Rationalising the denominator]

$$CE = \frac{140\sqrt{3}}{3}$$

Height of the first tower CD = CE + DE

$$\begin{aligned}&= \frac{140\sqrt{3}}{3} + 60 \\ &= \frac{(140 \times 1.73)}{3} + 60 \quad [\sqrt{3} = 1.73]\end{aligned}$$

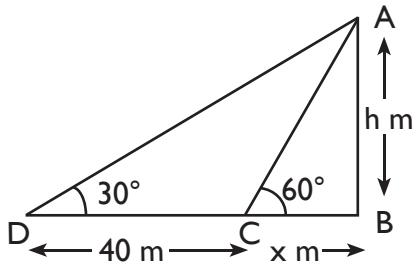
$$= \frac{242.2}{3} + 60$$

$$= 80.73 + 60$$

$$= 140.73 \text{ m}$$

Height of the first tower (CD) = 140.73 m

14. AB is the tower and BC is the length of the shadow when the Sun's altitude is 60° , i.e., the angle of elevation of the top of the tower from the tip of the shadow is 60° and DB is the length of the shadow when the angle of elevation is 30° .



Now, let AB be h m and BC be x m. According to the question, DB is 40 m longer than BC.

$$\text{So, } BD = (40 + x) \text{ m}$$

Now, we have two triangles ABC and ABD.

In $\triangle ABC$,

$$\begin{aligned} \tan 60^\circ &= \frac{AB}{BC} \text{ or } \sqrt{3} = \frac{h}{x} \\ \Rightarrow x\sqrt{3} &= h \end{aligned} \quad \dots(\text{i})$$

In $\triangle ABD$,

$$\begin{aligned} \tan 30^\circ &= \frac{AB}{BD} \\ \text{i.e., } \frac{1}{\sqrt{3}} &= \frac{h}{x + 40} \end{aligned} \quad \dots(\text{ii})$$

Using (i) in (ii), we get $(x\sqrt{3})\sqrt{3} = x + 40$,

$$\text{i.e., } 3x = x + 40$$

$$\text{i.e., } x = 20$$

$$\text{So, } h = 20\sqrt{3} \quad [\text{From (i)}]$$

Therefore, the height of the tower is $20\sqrt{3}$ m.

Section C

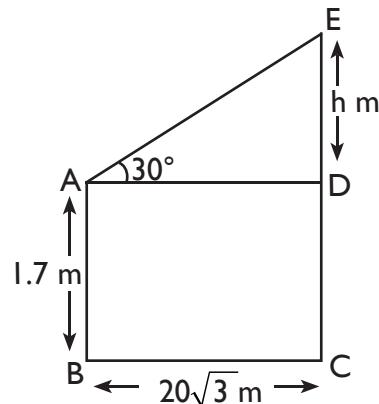
15. Let AB be the height of the observer and EC be the height of the tower.

Given:

$$AB = 1.7 \text{ m} \Rightarrow CD = 1.7 \text{ m}$$

$$BC = 20\sqrt{3} \text{ m}$$

Let ED be h m.



In $\triangle ADE$,

$$\tan 30^\circ = \frac{ED}{AD}$$

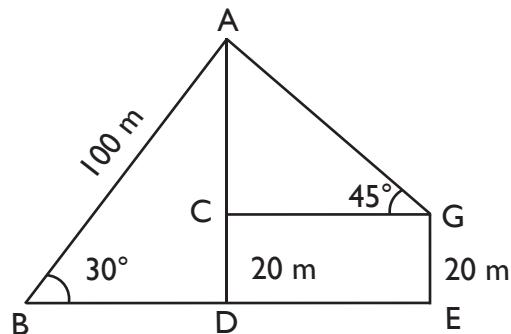
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{20\sqrt{3}}$$

$$\Rightarrow h = 20 \text{ m}$$

$$\therefore EC = ED + DC = (h + 1.7) \text{ m} = 21.7 \text{ m}$$

Hence, the height of the tower is 21.7 m.

16.



Distance between girl and bird is $30\sqrt{2}$ m = 42.43 m.

Given: Distance between boy and bird = 100 m

Height of building = 20 m

Angle of elevation boy = 30°

Angle of elevation girl = 45°

To find: Distance between girl and bird

In $\triangle ABC$

Using trigonometric ratio, we get

$$\sin 30^\circ = \frac{AC}{AB}$$

$$\frac{l}{2} = \frac{AC}{100}$$

$$AC = \frac{100}{2}$$

$$AC = 50 \text{ m}$$

$\Rightarrow AC = FA + CF$ (from figure)

$$50 = FA + 20 \quad (\because CF = ED = 20 \text{ m})$$

$$FA = 50 - 20$$

$$FA = 30 \text{ m}$$

Now, In $\triangle AEF$

Using trigonometric ratio, we get

$$\sin 45^\circ = \frac{FA}{AE}$$

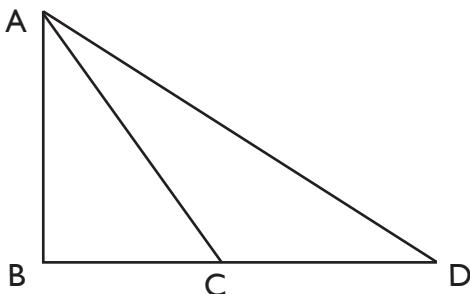
$$\frac{l}{\sqrt{2}} = \frac{30}{AE}$$

$$AE = 30\sqrt{2} = 42.43 \text{ m}$$

Therefore, distance between girl and bird is

$$30\sqrt{2} = 42.43 \text{ m}$$

17.



We are given that from the top of tower 96 m high, the angles of depression of two cars on a road at the same level as the base of the tower and on the same side of it are theta and phi, where $\tan \theta = \frac{3}{4}$ and $\tan \phi = \frac{l}{3}$

In the figure drawn above, let $\angle ACB = \tan \theta = \frac{3}{4}$ and $\angle ADB = \tan \phi = \frac{l}{3}$ and also the height of the tower = $AB = 96 \text{ m}$.

Now, as we know that $\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}$

So, in $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC}$$

$$\frac{3}{4} = \frac{96}{BC}$$

$$BC = \frac{96 \times 4}{3}$$

$$BC = 32 \times 4 = 128 \text{ m}$$

Now, in $\triangle ABD$,

$$\tan \phi = \frac{AB}{BD}$$

$$\frac{l}{3} = \frac{96}{BD}$$

$$BD = \frac{96 \times 3}{l}$$

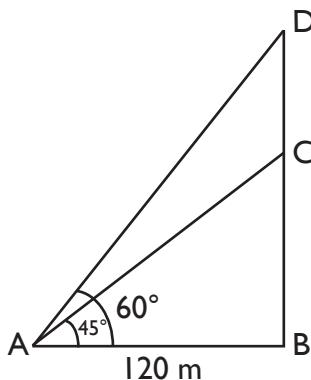
$$BD = 288 \text{ m}$$

So, the distance between two cars =

$$CD = BD - BC$$

$$= 288 \text{ m} - 128 \text{ m} = 160 \text{ m}$$

18.



Height of the flagstaff = CD

According to the figure,

$$\tan 45^\circ = \frac{CB}{120}$$

$$\Rightarrow CB = \frac{120}{l}$$

$$\therefore CB = 120 \text{ m}$$

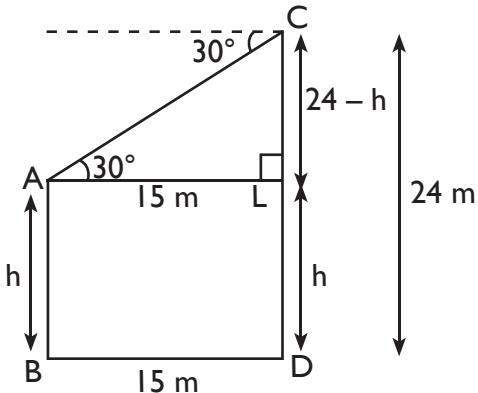
$$\tan 60^\circ = \frac{BD}{120}$$

$$\Rightarrow \sqrt{3} = \frac{BD}{120}$$

$$\therefore BD = 120 \times 1.73 = 207.6 \text{ m}$$

$$\therefore \text{Height of the flagstaff} = CD = 207.6 - 120 = 87.6 \text{ m}$$

19.



Let AB and CD be two poles, where CD = 24 m.

It is given that angle of depression of the top of the pole AB as seen from the top of the pole CD is 30° and horizontal distance between the two poles is 15 m.

$$\therefore \angle CAL = 30^\circ \text{ and } BD = 15 \text{ m.}$$

To find: Height of pole AB

Let the height of pole AB be h m.

$$AL = BD = 15 \text{ m and } AB = LD = h$$

$$\text{Therefore, } CL = CD - LD = 24 - h$$

Consider right $\triangle ALC$:

$$\tan \angle CAL = \frac{\text{Perpendicular}}{\text{Base}} = \frac{CL}{AL}$$

$$\Rightarrow \tan 30^\circ = \frac{24 - h}{15}$$

$$\Rightarrow 24 - h = \frac{15}{\sqrt{3}}$$

$$\Rightarrow 24 - h = 5\sqrt{3}$$

$$\Rightarrow h = 24 - 5\sqrt{3}$$

$$\Rightarrow h = 24 - 5 \times 1.732 \quad [\text{Taking } \sqrt{3} = 1.732]$$

$$\Rightarrow h = 15.34$$

Therefore, height of the pole AB = h m = 15.34 m.

20. Given AB is the tower.

P and Q are the points at distance of 4m and 9m respectively.

From fig, PB = 4m, QB = 9m.

Let angle of elevation from P be α and angle of elevation from Q be β .

Given that α and β are supplementary. Thus, $\alpha + \beta = 90$

In $\triangle ABP$,

$$\tan \alpha = \frac{AB}{BP} \quad \dots(i)$$

In $\triangle ABQ$,

$$\tan \beta = \frac{AB}{BQ}$$

$$\tan (90 - \alpha) = AB/BQ \quad (\text{Since, } \alpha + \beta = 90)$$

$$\cot \alpha = \frac{AB}{BQ}$$

$$1/\tan \alpha = \frac{AB}{BQ}$$

$$\text{So, } \tan \alpha = \frac{BQ}{AB} \quad \dots(ii)$$

From (i) and (ii)

$$\frac{AB}{BP} = \frac{BQ}{AB}$$

$$AB^2 = BQ \times BP$$

$$AB^2 = 4 \times 9$$

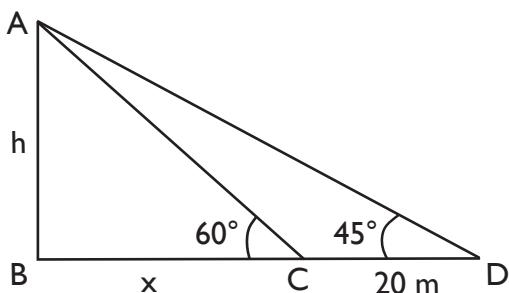
$$AB^2 = 36$$

Therefore, AB = 6.

Hence, height of tower is 6m.

Section D

21.



From the figure h = length of the tower

From the $\triangle ABC$

$$\Rightarrow h = 1.732 \times \dots \quad (1)$$

From the $\triangle ABD$

$$\Rightarrow h = 20 + x \dots \quad (2)$$

Equating equation (1) = equation (2)

$$1.732 x = x + 20$$

$$\Rightarrow 0.732 x = 20$$

$$\Rightarrow x = 27.32 \text{ m}$$

Thus the height of the tower is given by

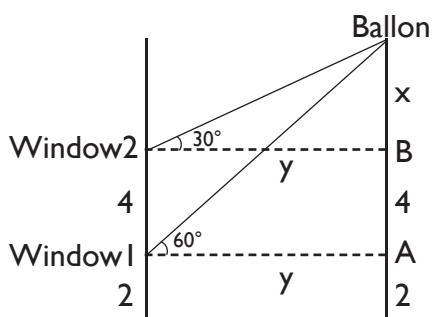
$$h = 1.732 x$$

$$\Rightarrow h = 1.732 \times 27.32$$

$$\Rightarrow h = 47.32 \text{ m}$$

This is the value of height of the tower.

22.



$$\tan 30^\circ = \frac{x}{y}$$

$$y = x \sqrt{3} \dots (i)$$

$$\tan 60^\circ = \frac{x+4}{y}$$

$$y = \frac{x+4}{\sqrt{3}} \dots (ii)$$

Equating (i) and (ii)

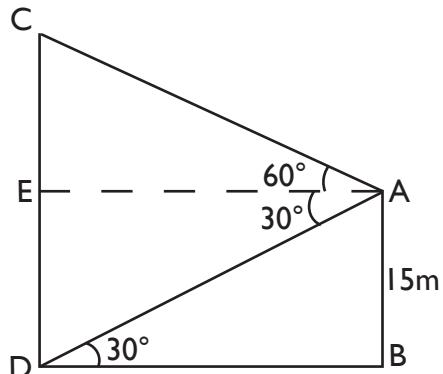
$$x \sqrt{3} = \frac{x+4}{\sqrt{3}}$$

$$3x = 3 + 4$$

$$x = 2$$

Height of balloon from the ground = $2 + 4 + 2 = 8 \text{ m}$

23.



$$AB = ED = 15 \text{ m}$$

$$AE = BD$$

In $\triangle ADB$,

$$\tan 30^\circ = \frac{15}{DB}$$

$$DB = 15\sqrt{3} \text{ m}$$

$$\text{Or, } AE = 15\sqrt{3} \text{ m}$$

In $\triangle ACE$,

$$\tan 60^\circ = \frac{CE}{AE}$$

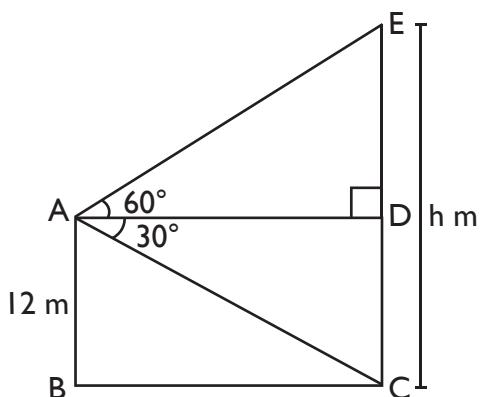
$$CE = 15\sqrt{3} \text{ m} = 45 \text{ m}$$

$$\text{So, } CD = CE + ED = 60 \text{ m}$$

AB is the building.

CD is the tower.

24.



Let AB be the deck of the ship. $AB = 10 \text{ cm}$

Suppose CE be the cliff. C and E are the top and bottom of the cliff

Let CE = h m

Given, $\angle EAD = 60^\circ$ and $\angle DAC = 30^\circ$

CD = AB = 12 m

$$\therefore DE = CE - CD = (h - 12)m$$

In $\triangle ADE$,

$$\tan 60^\circ = \frac{DE}{AD} \quad \left(\tan \theta = \frac{\text{Perpendicular}}{\text{Base}} \right)$$

$$\therefore \sqrt{3} = \frac{(h - 12)m}{AD}$$

$$\Rightarrow AD = \frac{(h - 12)}{\sqrt{3}}m = \frac{(h - 12)\sqrt{3}}{3}m \quad \dots(i)$$

In $\triangle ADC$,

$$\tan 30^\circ = \frac{CD}{AD}$$

$$\therefore \frac{1}{\sqrt{3}} = \frac{12m}{AD}$$

$$\Rightarrow AD = 12\sqrt{3} m$$

From (i) and (ii), we have

$$\frac{(h - 12)\sqrt{3}}{3}m = 12\sqrt{3} m$$

$$\Rightarrow h = 36 + 12 = 48$$

Height of the cliff = 48 m

Distance of cliff from the ship = BC = AD = $12\sqrt{3}$ m

Chapter
10

Circles

MULTIPLE CHOICE QUESTIONS

1. $C - r = 37$

$$C = 37 - r$$

$$C = 2\pi r$$

$$37 + r = \frac{2 \times 22}{7 \times r}$$

$$37 + r = \frac{44r}{7}$$

$$37 = \frac{44r}{7 - r} = \frac{37r}{7}$$

$$r = \frac{37 \times 7}{37}$$

$$r = 7 \text{ cm}$$

$$C = \frac{2 \times 22}{7 \times 7} = 44 \text{ cm}$$

Option (b)

2. $\pi r_1^2 + \pi r_2^2 = \pi r^2$

$$r_1^2 + r_2^2 = r^2$$

$$5^2 + (12)^2 = r^2$$

Option (b)

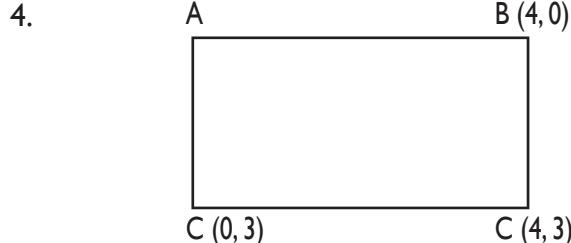
3. Distance covered in one revolution

$$= 2\pi r$$

$$= 2 \times \frac{22}{7} \times \frac{35}{2}$$

$$= 110 \text{ cm}$$

Option (b)



$$\begin{aligned} \text{Diagonal } BD &= \sqrt{(4-0)^2 + (0-3)^2} \\ &= \sqrt{16+9} \\ &= \sqrt{25} \\ &= 5 \end{aligned}$$

Option (a)

5. Radius $= \frac{18}{2} = 9 \text{ cm}$

$$\text{Perimeter} = 2\pi r$$

$$= 2\pi r (9)$$

$$= 18\pi r \text{ cm}$$

Option (c)

WORKSHEET 1

Section A

$$\begin{aligned} 1. \text{ Arc length} &= \frac{\theta}{360^\circ} 2\pi r \\ 3\pi &= \frac{\theta}{360^\circ} 2\pi \times 6 \\ \Rightarrow 3\pi &= \frac{\theta\pi}{30} \\ \Rightarrow \theta &= \frac{3\pi \times 30}{\pi} \\ &= 90^\circ \end{aligned}$$

2. Diameter $= 14 \text{ cm}$

$$\Rightarrow \text{radius} = \frac{14}{2} 7 \text{ cm}$$

Perimeter of semi – circle protractor

$$= 2r + \frac{1}{2} (2\pi r)$$

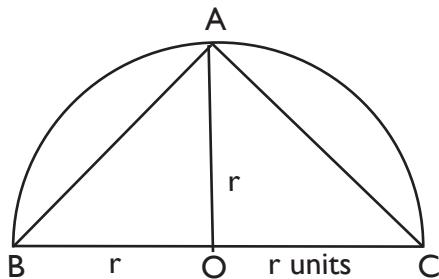
$$= 2r + \pi r$$

$$= 2(7) + \frac{22}{7} \times 7$$

$$= 14 + 22$$

$$= 36 \text{ cm}$$

3.



$$\begin{aligned}\text{Area of } \triangle BAC &= \frac{1}{2} \times BC \times AO \\ &= \frac{1}{2} \times 2r \times r \\ &= r^2 \text{ sq.units}\end{aligned}$$

4. Perimeter of sector

$$= 2r + \frac{\theta}{360^\circ} 2\pi r$$

$$= 2r \left(1 + \frac{\pi\theta}{360^\circ} \right)$$

$$= 2(10.5) \left(1 + \frac{22}{7} \times \frac{60}{360} \right)$$

$$= 21 \left(1 + \frac{11}{21} \right)$$

$$= \frac{21 \times 32}{21}$$

$$= 32 \text{ cm}$$

5. $r = 10 \text{ cm}$

$$\theta = 108^\circ$$

$$\begin{aligned}\text{area of sector} &= \frac{\theta}{360^\circ} \pi r^2 \\ &= \frac{108}{360} \times \pi(100)\end{aligned}$$

$$= 3\pi 10$$

$$= 30\pi \text{ cm}^2$$

6. Distance covered in one revolution

$$= 2\pi r$$

$$= 2 \times \frac{22}{7} \pi$$

Number of revolutions in covering a distance of x metres.

$$= \frac{x}{2 \times \frac{22}{7} \times r}$$

$$= \frac{7x}{44r}$$

7. Let the diameter and a side be x units.

$$\text{So, radius of circle} = \frac{x}{2} \text{ units}$$

$$\therefore \text{Area of circle} = \pi \left(\frac{x}{2} \right)^2$$

$$= \frac{\pi x^2}{4}$$

Area of equilateral triangle

$$= \frac{\sqrt{3}}{4} (\text{side})^2$$

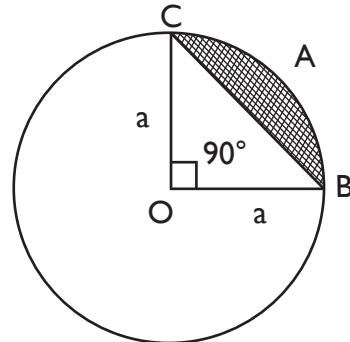
$$= \frac{\sqrt{3}}{4} x^2$$

$$\therefore \frac{\text{Area of circle}}{\text{Area of equilateral triangle}}$$

$$= \frac{\frac{\pi x^2}{4}}{\frac{\sqrt{3}}{4} x^2}$$

$$= \frac{\pi}{\sqrt{3}}$$

8.



Perimeter of segment ABC

$$= BC + \text{length of arc } \overset{\frown}{BAC}$$

In $\triangle BOC$,

$$BC^2 = OC^2 + OB^2$$

(By Pythagoras theorem)

$$BC^2 = a^2 + a^2$$

$$= 2a^2$$

$$\therefore BC = \sqrt{2}a$$

Also length of arc $\overset{\frown}{BAC}$

$$= \frac{90}{360} \times 2 \times \frac{22}{7} \times a$$

$$= \frac{11a}{7}$$

So, Perimeter of segment ABC

$$= \sqrt{2}a + \frac{11a}{7}$$

Section B

9. We know that $AD = AF$

$$BD = BE$$

$$CE = CF$$

Let $AD = AF = x$

$$BD = BE = y$$

$$CE = CF = z$$

$$\text{Then } x + y = 12$$

$$y + z = 8$$

$$x + z = 10$$

On Solving above equation we get $x = 7, y = 5, z = 3$

So $AD = 7, BE = 5, CF = 3$

10. $BP = AP = 5 \text{ cm}$

(The lengths of tangents drawn from an external point to a circle are equal.)

$$\therefore \angle PAB = \angle PBA$$

(Angle opposite to equal sides are equal.)

In $\triangle PAB$,

$$\angle P + \angle PAB + \angle PBA = 180^\circ$$

(Angle sum property)

$$60^\circ + 2 \angle PAB = 180^\circ$$

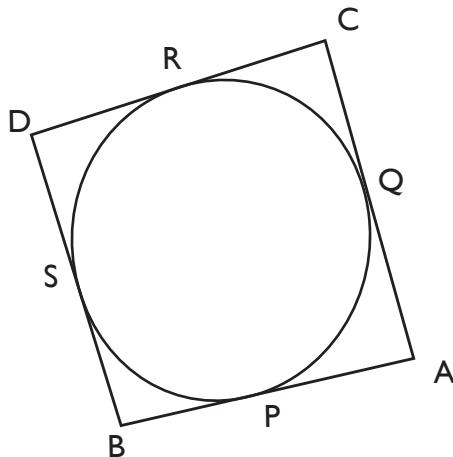
$$2 \angle PAB = 120^\circ$$

$$\angle PAB = 60^\circ$$

$$\therefore \angle PAB = \angle PBA = 60^\circ$$

$$\therefore AB = PA = PB = 5 \text{ cm}$$

II.



$$AP + PB + CR + RD = BQ + CQ + AS + DS$$

As we know that the length of tangents drawn from an external point to a circle are equal,

$$AP = AS \quad (i)$$

$$BP = BQ \quad (ii)$$

$$CR = CQ \quad (iii)$$

$$DR = DS \quad (iv)$$

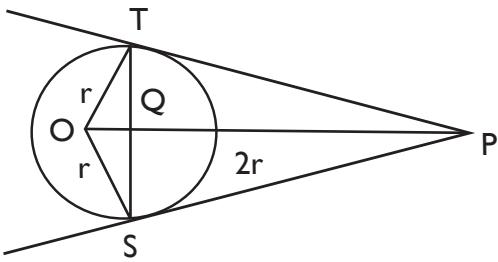
On adding both sides of (i), (ii), (iii) and (iv), we get

$$AP + BP + CR + DR = AS + BQ + CQ + DS$$

$$\therefore (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$$

$$AB + CD = BC + AD$$

12.



$$\angle TOP = \theta$$

As we know that radius is perpendicular to the tangent at the point of contact.

$$\angle OTP = 90^\circ$$

So, in $\triangle OTP$

$$\cos \theta = \frac{OT}{OP} = \frac{r}{2r} = \frac{1}{2}$$

$$\therefore \cos \theta = \frac{1}{2} = \cos 60^\circ$$

$$\Rightarrow \theta = 60^\circ$$

$$\therefore \angle TOS = 60^\circ + 60^\circ = 120^\circ$$

As $OT = OS$

$$\Rightarrow \angle OTS = \angle OST$$

(Angles opposite to equal sides are equal.)

In $\angle OTS$,

$$\angle TOS + \angle OTS + \angle OST = 180^\circ$$

$$120^\circ + 2 \angle OTS = 180^\circ$$

$$2 \angle OTS = 60^\circ$$

$$\angle OTS = 30^\circ$$

$$\therefore \angle OTS = \angle OST = 30^\circ$$

13. In $\triangle OTP$ and $\triangle OSP$

$$OT = OS \quad (\text{Radii of same circle})$$

$$OP = PO \quad (\text{Common})$$

$$PT = PS$$

(The lengths of tangents drawn from an external point to a circle are equal.)

$\therefore \triangle OTP \cong \triangle OSP \text{ (SSS)}$

$$\therefore \angle OPS = \angle OPT$$

$$= \frac{1}{2} \angle TPS \quad (\text{CPCT})$$

$$= \frac{1}{2} (120^\circ)$$

$$= 60^\circ$$

In $\triangle OSP$,

$$OS \perp PS$$

(Radius is perpendicular to the tangent at the point of contact.)

$$\cos (\angle OPS) = \frac{PS}{OP}$$

$$\Rightarrow \cos 60^\circ = \frac{PS}{OP}$$

$$\Rightarrow \frac{1}{2} = \frac{PS}{OP}$$

$$\Rightarrow OP = 2 PS$$

14. In $\triangle OAP$,

$$OA = 6 \text{ cm}$$

$$AP = 8 \text{ cm}$$

$$\therefore OP^2 = OA^2 + AP^2$$

(By Pythagoras theorem)

$$= 6^2 + 8^2$$

$$= 36 + 64$$

$$= 100$$

$$\Rightarrow OP = 10 \text{ cm}$$

Now, In $\triangle OBP$,

$$OP^2 = OB^2 + BP^2$$

$$10^2 = 4^2 + BP^2$$

(By Pythagoras theorem)

$$100 = 16 + BP^2$$

$$BP^2 = 100 - 16$$

$$= 84$$

$$\therefore BP = 2\sqrt{21} \text{ cm}$$

15. $\angle OAC = 90^\circ$ (as radius \perp tangent)

$$\angle BOC = \angle OAC + \angle ACO$$

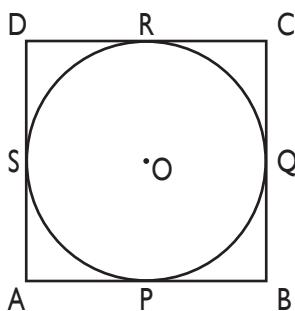
(Exterior angle property)

$$130^\circ = 90^\circ + \angle ACO$$

$$\angle ACO = 130^\circ - 90^\circ = 40^\circ$$

Section C

16.



A rhombus is a parallelogram with all equal sides.

In II gm ABCD

$$AB = CO \text{ and } AD = BC$$

$$\text{Hence } AP = AS; BP = BQ; CR = CQ; DR = DS$$

$$\text{Adding we get } AP + BP + CR + DR = AS + BQ + CQ + DS$$

$$(AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$$

$$AB + CD = AD + BC$$

$$AB + AB = AD + AD$$

$$2AB = 2AD$$

$$\text{So } AB = AD \text{ and } AB = CD \text{ and } AD = BC$$

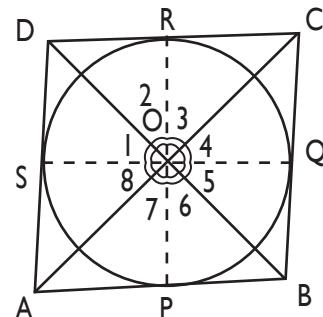
$$\text{So } AB = CD = AD = CD$$

So ABCD is II gm with equal sides.

\therefore ABCD is a rhombus.

\therefore Proved.

17.



Const: Join OP, OQ, OR and OS.

Proof: Since, the two tangents drawn from an external point to a circle subtend equal angles at the centre.

$$\therefore \angle 1 = \angle 2, \angle 3 = \angle 4, \angle 5 = \angle 6, \angle 7 = \angle 8$$

Since sum of all the angles subtended at a point is 360° .

$$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8$$

$$= 360^\circ$$

$$\Rightarrow 2\angle 2 + 2\angle 3 + 2\angle 6 + 2\angle 7 = 360^\circ$$

$$\Rightarrow 2(\angle 2 + \angle 3 + \angle 6 + \angle 7) = 360^\circ$$

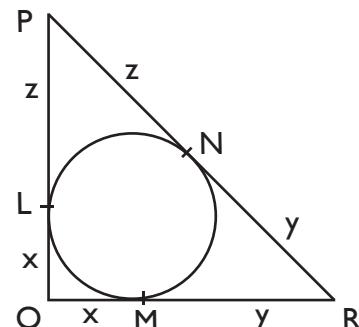
$$\Rightarrow \angle 2 + \angle 3 + \angle 6 + \angle 7 = 180^\circ$$

$$\Rightarrow (\angle 6 + \angle 7) + (\angle 2 + \angle 3) = 180^\circ$$

$$\Rightarrow \angle AOB + \angle COD = 180^\circ$$

Similarly, we can prove $\angle AOD + \angle BOC = 180^\circ$

18.



$$QL = QM$$

$$RM = RN$$

$$PL = PN$$

We know that the tangents drawn to a circle from an external point are equal in length.

$$\text{Let } QL = QM = x$$

Let $RM = RN = y$

Let $PL = PN = z$

Consider $PQ + QR + PR = 60$

$$\Rightarrow x + z + x + y + z + y = 60$$

$$\Rightarrow 2x + 2y + 2z = 60$$

$$\Rightarrow x + y + z = 30$$

$$PQ = 20$$

$$x + z = 20$$

$$\therefore RN = 10 \text{ cm}$$

$$\text{Also, } QR = 16$$

$$x + y = 16$$

$$\therefore z = 30 - (x + y)$$

$$= 30 - 16$$

$$= 14 \text{ cm}$$

$$\therefore PL = 14 \text{ cm}$$

$$\text{Again, } PR = 24$$

$$y + z = 24$$

$$\therefore x = 30 - (y + z)$$

$$= 30 - 24$$

$$= 6$$

$$\therefore QM = 6 \text{ cm}$$

19. Given: a circle with centre o to which XY and XY' are tangents.

$$TP - \angle AOB = 90^\circ$$

Const: Join OY , OY' and OC

Proof: In $\triangle OYA$ and $\triangle OCA$

$$OY = OC \text{ [radii]}$$

$$OA = OA \text{ [common]}$$

$$AY = AC \text{ [tangents]}$$

\Rightarrow By SSS

$\triangle OYA \approx \triangle OCA$

$$\Rightarrow \angle OY'A = \angle OCA \text{ [CPCT]} \dots \text{ (1)}$$

\parallel ly $\triangle OY'B \approx \triangle OCB$

$$\Rightarrow \angle Y'BO = \angle CBO \text{ [CPCT]} \dots \text{ (2)}$$

$\angle YAB + \angle Y'BA = 180^\circ$ [co-interior angles]

$2\angle OAB + 2\angle OBA = 180^\circ$ --- [from (1) and (2)]

$$2(\angle OAB + \angle OBA) = 180^\circ$$

$$\angle OAB + \angle OBA = 90^\circ \dots \text{ (3)}$$

In $\triangle AOB$

$$\angle OAB + \angle OBA + \angle AOB = 180^\circ$$

[Angle sum property of a triangle]

$$90^\circ + \angle AOB = 180^\circ$$

$$\angle AOB = 180^\circ - 90^\circ$$

$$\angle AOB = 90^\circ$$

\therefore Hence Proved

20. GIVEN: a circle with centre o to which XY and XY' are tangents

$$TP - \angle AOB = 90^\circ$$

CONST.: join OY , OY' and OC

PROOF: In $\triangle OYA$ and $\triangle OCA$

$$OY = OC \text{ [radii]}$$

$$OA = OA \text{ [common]}$$

$$AY = AC \text{ [tangents]}$$

\Rightarrow By SSS

$\triangle OYA \approx \triangle OCA$

$$\Rightarrow \angle OY'A = \angle OCA \text{ [CPCT]} \dots \text{ (1)}$$

\parallel ly $\triangle OY'B \approx \triangle OCB$

$$\Rightarrow \angle Y'BO = \angle CBO \text{ [CPCT]} \dots \text{ (2)}$$

$\angle YAB + \angle Y'BA = 180^\circ$ [co-interior angles]

$2\angle OAB + 2\angle OBA = 180^\circ$ --- [from (1) and (2)]

$$2(\angle OAB + \angle OBA) = 180^\circ$$

$$\angle OAB + \angle OBA = 90^\circ \quad \dots \dots \dots (3)$$

In $\triangle AOB$

$$\angle OAB + \angle OBA + \angle AOB = 180^\circ$$

[Angle sum property of a triangle]

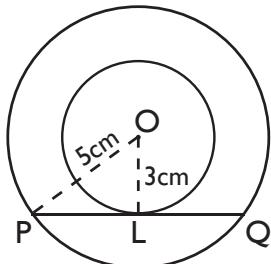
$$90^\circ + \angle AOB = 180^\circ$$

$$\angle AOB = 180^\circ - 90^\circ$$

$$\angle AOB = 90^\circ$$

\therefore Hence Proved

21.



Let O be the common centre of the two concentric circles.

Let PQ be a chord of the larger circle which touches the smaller circle at L.

Join OL and OP.

Since, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Therefore,

$$\angle OLP = 90^\circ$$

Now,

In $\triangle OLP$, we have

$$OP^2 = OL^2 + PL^2$$

[Using Pythagoras theorem]

$$\Rightarrow (5)^2 = (3)^2 + PL^2$$

$$\Rightarrow 25 = 9 + PL^2$$

$$\Rightarrow PL^2 = 16$$

$$\Rightarrow PL = 4 \text{ cm}$$

Since, the perpendicular from the centre of a circle to a chord bisects the chord.

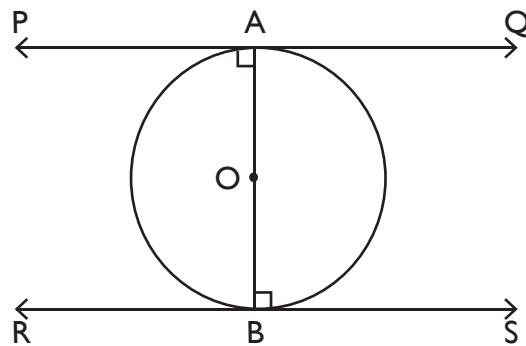
Therefore,

$$PL = LQ = 4 \text{ cm}$$

$$\therefore PQ = 2 PL = 2 \times 4 = 8 \text{ cm}$$

Hence, the required length = 8 cm.

22.



Let AB be the diameter of a circle, with centre O. The tangents PQ and RS are drawn at point A and B, respectively.

We know that a tangent at any point of a circle is perpendicular to the radius through the point of contact.

$$\therefore OA \perp PQ \text{ and } OB \perp RS$$

$$\Rightarrow \angle OBR = 90^\circ$$

$$\angle OBS = 90^\circ$$

$$\angle OAP = 90^\circ$$

$$\angle OAQ = 90^\circ$$

We can observe the following:

$$\angle OBR = \angle OAQ \text{ and } \angle OBS = \angle OAP$$

Also, these are the pair of alternate interior angles.

Since alternate angles are equal, the lines PQ and RS are parallel to each other.

Hence, proved.

Section D

23. Clearly $\angle OPT = 90^\circ$

$$AO = AO' + O'X + OX$$

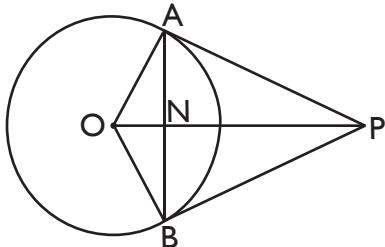
$= 3AO'$ (since $AO' = O'X = OX$ because radii of the two circles are equal)

$$\frac{AO'}{AO} = \frac{AO'}{3AO} = \frac{1}{3}$$

$$\frac{DO'}{CO} = \frac{AO'}{AO} = \frac{1}{3}$$

$$\frac{DO'}{CO} = \frac{1}{3}$$

27.



$$OA = 10 \text{ cm}$$

$$ON \perp AB$$

$$AN = NB = \frac{16}{2} = 8 \text{ cm}$$

Pythagoras Theorem

In $\triangle ONA$,

$$ON^2 + NA^2 = OA^2$$

$$ON^2 = OA^2 - NA^2$$

$$ON^2 = 10^2 - 8^2$$

$$ON^2 = 36 \text{ cm}$$

$$ON = 6 \text{ cm}$$

$$\tan \angle AON = \frac{AN}{ON} = \frac{8}{6} = \frac{4}{3}$$

$\triangle OAP$

$$\tan \angle AON = \frac{PA}{OA}$$

$$\frac{4}{3} = \frac{PA}{10}$$

$$\Rightarrow PA = \frac{40}{3} \text{ cm}$$

28. Given $\angle RPQ = 30^\circ$ and PR and PQ are tangents drawn from P to the same circle.

Hence $PR = PQ$ [Since tangents drawn from an

external point to a circle are equal in length]

$\therefore \angle PRQ = \angle PQR$ [Angles opposite to equal sides are equal in a Δ]

In $\triangle PQR$

$$\angle RQP + \angle QRP + \angle RPQ = 180^\circ$$

[Angle sum property of a Δ]

$$2\angle RQP + 30^\circ = 180^\circ$$

$$2\angle RQP = 150^\circ$$

$$\angle RQP = 75^\circ$$

$$\text{So } \angle RQP = \angle QRP = 75^\circ$$

$$\angle RQP = \angle RSQ = 75^\circ$$

[By Alternate Segment Theorem]

Given, $RS \parallel PQ$

$$\therefore \angle RQP = \angle SRQ = 75^\circ$$
 [Alternate angles]

$$\angle RSQ = \angle SRQ = 75^\circ$$

$\therefore QRS$ is also an isosceles triangle.

[Since sides opposite to equal angles of a triangle are equal.]

$$\angle RSQ + \angle SRQ + \angle RQS = 180^\circ$$

[Angle sum property of a triangle]

$$75^\circ + 75^\circ + \angle RQS = 180^\circ$$

$$150^\circ + \angle RQS = 180^\circ$$

$$\therefore \angle RQS = 30^\circ$$

29. Given: ABCD is a quadrilateral such that $\angle D = 90^\circ$.

$$BC = 38 \text{ cm}, CD = 25 \text{ cm} \text{ and } BP = 27 \text{ cm}$$

$$BP = BQ = 27 \text{ cm}$$

[Tangents from an external point]

$$BC = 38$$

$$\Rightarrow BQ + QC = 38$$

$$\Rightarrow 27 + QC = 38$$

$$\Rightarrow QC = 38 - 27$$

$$\Rightarrow QC = 11 \text{ cm}$$

$$\therefore QC = 11 \text{ cm} = CR$$

[Tangents from an external point]

$$CD = 25 \text{ cm}$$

$$CR + RD = 25$$

$$\Rightarrow 11 + RD = 25$$

$$\Rightarrow RD = 25 - 11$$

$$\Rightarrow RD = 14 \text{ cm}$$

Also,

$$RD = DS = 14 \text{ cm}$$

$\therefore OR$ and OS are radii of the circle.

From tangents R and S , $\angle ORD = \angle OSD = 90^\circ$

Now, $ORDS$ is a square.

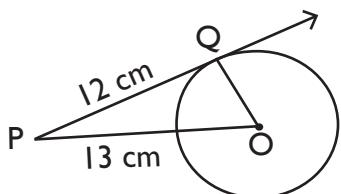
$$\therefore OR = DS = 14 \text{ cm}$$

Thus, radius, $r = 14 \text{ cm}$

WORKSHEET 2

Section A

1.



As we know that tangent to a circle is perpendicular to the radius through the point of contact.

$$\therefore OQ \perp PQ$$

$$\therefore \angle OQP = 90^\circ$$

So, In $\triangle OQP$,

$$OP^2 = OQ^2 + PQ^2$$

$$13^2 = OQ^2 + 12^2$$

$$169 = OQ^2 + 144$$

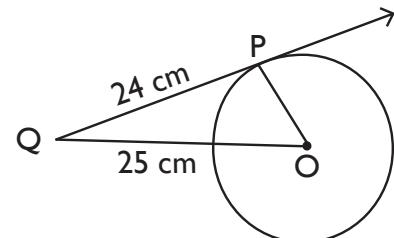
$$OQ^2 = 169 - 144$$

$$= 25$$

$$\therefore OQ = 5 \text{ cm}$$

So, radius of circle = 5 cm

2.



As we know that tangent to a circle is perpendicular to the radius through the point of contact.

$$\therefore OP \perp PQ$$

$$\text{i.e. } \angle OPQ = 90^\circ$$

In $\triangle OPQ$,

$$OQ^2 = OP^2 + PQ^2$$

$$25^2 = OP^2 + 24^2$$

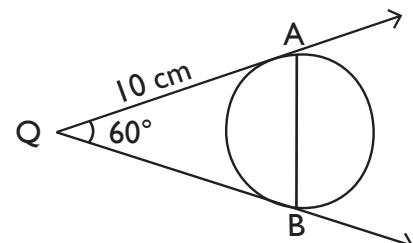
$$625 = OP^2 + 576$$

$$OP^2 = 625 - 576$$

$$= 49$$

$$\therefore OP = 7 \text{ cm}$$

3.



$$PB = PB$$

$$= 10 \text{ cm}$$

(Length of tangents drawn from an external point to a circle are equal.)

$$\Rightarrow \angle PAB = \angle PBA$$

(Angles opposite to equal sides are equal)

In $\triangle PBA$,

$$\angle P + \angle PAB + \angle PBA = 180^\circ$$

(Angle sum property)

$$60^\circ + \angle PAB + \angle PBA = 180^\circ$$

$$\begin{aligned}\angle PAB + \angle PBA &= 180^\circ - 60^\circ \\ &= 120^\circ\end{aligned}$$

$$\Rightarrow \angle PAB = \angle PBA = 60^\circ$$

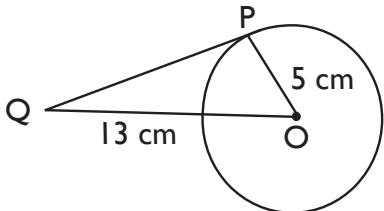
$$\text{So, } \angle PAB = \angle PBA = \angle P = 60^\circ$$

$\Rightarrow \triangle APB$ is equilateral

$$\Rightarrow AB = AP = 10 \text{ cm}$$

(Sides of equilateral triangle are equal.)

4.



As we know that tangent to a circle is perpendicular to the radius through the point of contact.

$$\therefore OP \perp PQ$$

$$\text{i.e. } \angle OPQ = 90^\circ$$

So, In $\triangle OPQ$,

$$OQ^2 = OP^2 + PQ^2$$

$$13^2 = 5^2 + PQ^2$$

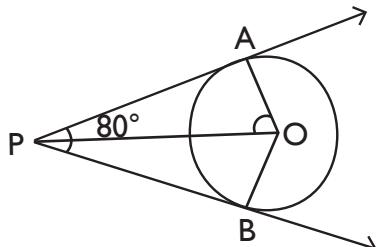
$$169 = 25 + PQ^2$$

$$\therefore PQ^2 = 169 - 25$$

$$= 144$$

$$\Rightarrow PQ = 12 \text{ cm}$$

5.



In $\triangle POA$ and $\triangle POB$,

$$PA = PB$$

(Length of tangents drawn from an external point to a circle are equal.)

$$OP = PO \quad (\text{Common})$$

$$OA = OB \quad (\text{Radii of same circle})$$

$\therefore \triangle POA \cong \triangle POB$

(SSS congruence criterion)

$$\therefore \angle APO = \angle BPO \text{ (CPCT)}$$

$$= \frac{1}{2} \angle APB$$

$$= \frac{1}{2} (80^\circ)$$

$$= 40^\circ$$

Also, $OA \perp AP$

$$\text{i.e. } \angle OAP = 90^\circ$$

(As tangent is perpendicular to radius through point of contact.)

In $\triangle OAP$,

$$\angle OAP + \angle APO + \angle AOP = 180^\circ$$

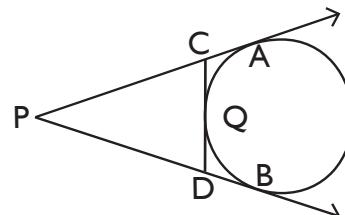
(Angle sum property)

$$\therefore 90^\circ + 40^\circ + \angle AOP = 180^\circ$$

$$\Rightarrow 130^\circ + \angle AOP = 180^\circ$$

$$\Rightarrow \angle AOP = 180^\circ - 130^\circ = 50^\circ$$

6.



$$PA = PB$$

(Tangents from external point P)

$$\Rightarrow PC + CA = 10$$

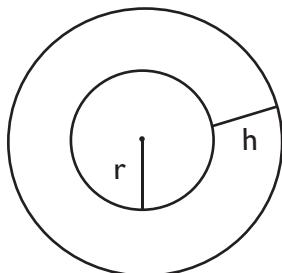
$$\Rightarrow PC + CQ = 10$$

[\because CA = CQ (Tangents from external point C)]

$$\Rightarrow PC + 2 = 10$$

$$\Rightarrow PC = 8 \text{ cm}$$

7.



$$\text{Radius of inner circle} = r$$

$$\text{Area of inner circle} = \pi r^2$$

$$\text{Radius of outer circle} = r + h$$

$$\text{Area of outer circle} = \pi (r + h)^2$$

So, area of circular path

$$= \text{area of outer circle}$$

$$- \text{area of inner circle}$$

$$= \pi (r + h)^2 - \pi r^2$$

$$= \pi (r^2 + h^2 + 2rh - r^2)$$

$$= \pi (h^2 + 2rh)$$

$$= \pi h (h + 2r)$$

$$= \pi h (2r + h)$$

$$8. \text{ Area of sector} = \frac{\theta}{360} \pi r^2$$

$$\therefore 20\pi = \frac{\theta}{360} \pi r^2$$

$$\Rightarrow 20 = \frac{\theta}{360} \pi r^2$$

$$\Rightarrow = \frac{\theta}{360} \frac{20}{r^2} \quad (1)$$

Also, arc length = 5π

$$\Rightarrow \frac{\theta}{360} 2\pi r = 5\pi$$

$$\Rightarrow \frac{2r\theta}{360} = 5$$

$$\Rightarrow \frac{\theta}{360} = \frac{5}{2r} \quad (2)$$

From (1), (2)

$$\frac{\theta}{360} = \frac{20}{r^2} = \frac{5}{2r}$$

$$\Rightarrow 40r = 5r^2$$

$$\Rightarrow 5r(r - 8) = 0$$

$$\Rightarrow r = 8$$

So, radius of circle = 8 cm

9. A circle can have infinitely many tangents

10. Remark: If AB and CD are two common tangents to the two circles of unequal radii then they will always intersect each other.

Given: Two circles with centre's O_1 and O_2 . AB and CD are common tangents to the circles which intersect in P.

To prove: AB = CD

Proof:

AP = PC ... (i) (Length of tangents drawn from an external point to the circle are equal)

PB = PD ... (ii) (Length of tangents drawn from an external point to the circle are equal)

Adding (i) and (ii), we get

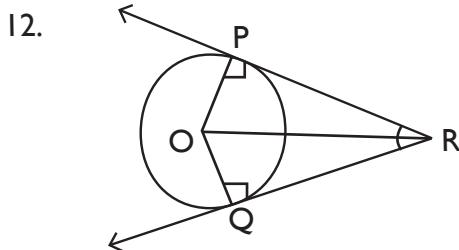
$$AP + PB = PC + PD$$

$$\Rightarrow AB = CD$$

Section B

$$11. \angle ABQ = \frac{1}{2} \angle AOQ = \frac{1}{2} (58^\circ) = 29^\circ$$

(\because Angle subtended by an arc at the centre is double the angle subtended by it on the remaining part of the circle.)



Join OP and OQ

PR and RQ are tangents to circle at points P and Q respectively.

$$\Rightarrow OP \perp PR \text{ and } OQ \perp QR$$

(As tangent is perpendicular to radius through point of contact.)

In $\triangle OPR$ and $\triangle OQR$

$$OP = OQ$$

(Radii of same circle)

$$OR = OR \quad (\text{Common})$$

$$\angle OPR = \angle OQR = 90^\circ \quad (\text{Proved above})$$

$$\therefore \triangle OPR \cong \triangle OQR$$

(RHS congruence criteria)

$$\begin{aligned} \Rightarrow \angle ORP &= \angle ORQ = \frac{1}{2} \angle PRQ \\ &= \frac{1}{2} (120^\circ) \\ &= 60^\circ \end{aligned}$$

In $\triangle PRO$,

$$\cos 60^\circ = \frac{PR}{OR}$$

$$\frac{1}{2} = \frac{PR}{OR}$$

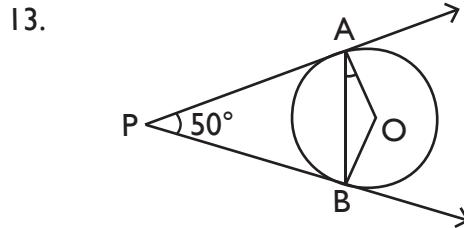
$$\Rightarrow PR = \frac{1}{2} OR \quad (\text{i})$$

In $\triangle QRO$

$$RQ = \frac{1}{2} OR \quad (\text{ii})$$

On adding (i) and (ii), we get

$$\begin{aligned} PR + RQ &= \frac{1}{2} OR + \frac{1}{2} OR \\ &= RO \end{aligned}$$



$$\Rightarrow PA = PB$$

(Length of tangents drawn from an external point to a circle are equal.)

$$\Rightarrow \angle PAB = \angle PBA \quad (\text{i})$$

(Angles opposite to equal sides are equal.)

In $\triangle APB$,

$$\angle P + \angle PAB + \angle PBA = 180^\circ$$

(Angle sum property)

$$50^\circ + \angle PAB + \angle PBA = 180^\circ \quad (\text{From (i)})$$

$$2 \angle PAB = 130^\circ$$

$$\therefore \angle PAB = \angle PBA = 65^\circ$$

$$OA \perp AP$$

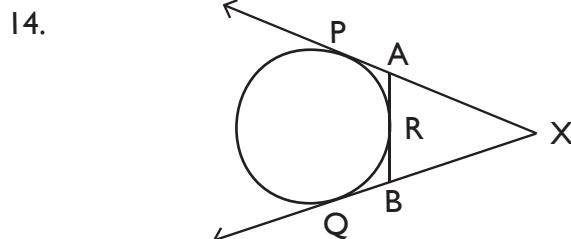
(As tangent is perpendicular to radius through point of contact.)

$$\Rightarrow \angle OAP = 90^\circ$$

$$\Rightarrow \angle OAB + \angle PAB = 90^\circ$$

$$\Rightarrow \angle OAB + 65^\circ = 90^\circ$$

$$\begin{aligned} \Rightarrow \angle OAB &= 90^\circ - 65^\circ \\ &= 25^\circ \end{aligned}$$



As we know that lengths of tangents drawn from an exterior point to a circle are equal.

$$\therefore XP = XQ, AP = AR \text{ and } BQ = BR$$

$$\Rightarrow XP + AP = XB + BQ$$

$$\Rightarrow XP + AR = XB + BR$$

15. As we know that lengths of tangents drawn from an exterior point to a circle are equal.

$$CE = CD = 9 \text{ cm}$$

$$BF = BD = 6 \text{ cm}$$

$$AE = AF = x \text{ cm}$$

Also, $OE \perp AC$, $OD \perp BC$ and $OF \perp AB$

(As tangent is perpendicular to radius through point of contact.)

$$\begin{aligned}\text{Area of } \triangle BOC &= \frac{1}{2} \times BC \times OD \\ &= \frac{1}{2} \times (9 + 6) \times 3 \\ &= \frac{1}{2} \times 15 \times 3 \\ &= \frac{45}{2} \text{ cm}^2\end{aligned}$$

$$\begin{aligned}\text{Area of } \triangle AOC &= \frac{1}{2} \times AC \times OE \\ &= \frac{1}{2} \times (9 + x) \times 3 \\ &= \frac{3}{2} (9 + x) \text{ cm}^2\end{aligned}$$

$$\begin{aligned}\text{Area of } \triangle AOB &= \frac{1}{2} \times AB \times OF \\ &= \frac{1}{2} \times (x + 6) \times 3 \\ &= \frac{3}{2} (x + 6) \text{ cm}^2\end{aligned}$$

$$\begin{aligned}\text{Area of } \triangle ABC &= \text{area of } \triangle BOC \\ &\quad + \text{area of } \triangle AOC \\ &\quad + \text{area of } \triangle AOB\end{aligned}$$

$$54 = \frac{45}{2} + \frac{1}{2} (9 + x) \times \frac{3}{2} (x + 6)$$

$$54 = \frac{45}{2} + \frac{27}{2} + \frac{18}{2} + \frac{3}{2} x + \frac{3}{2} x$$

$$54 = 45 + 3x$$

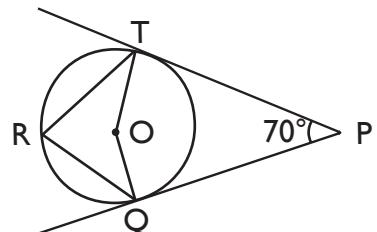
$$9 = 3x$$

$$\therefore x = 3$$

$$\text{So, } AB = x + 6 = 3 + 6 = 9 \text{ cm}$$

$$AC = x + 9 = 3 + 9 = 12 \text{ cm}$$

16.



As we know that tangent is perpendicular to the radius through the point of contact.

$$\therefore OT \perp PT \text{ and } OQ \perp PQ$$

$$\text{i.e. } \angle OTP = \angle OQP = 90^\circ$$

In quadrilateral TOQP

$$\angle TOQ + \angle OQP + \angle QPT + \angle PTO = 360^\circ$$

(Angle sum property of quadrilateral.)

$$\Rightarrow \angle TOQ + 90^\circ + 70^\circ + 90^\circ = 360^\circ$$

$$\Rightarrow \angle TOQ + 250^\circ = 360^\circ$$

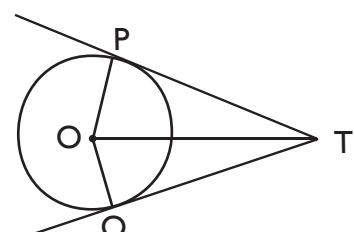
$$\begin{aligned}\Rightarrow \angle TOQ &= 360^\circ - 250^\circ \\ &= 110^\circ\end{aligned}$$

$$\angle TRQ = \frac{1}{2} \angle TOQ$$

(Angle subtended an arc at the centre is double the angle subtended by it on the remaining part of the circle.)

$$\begin{aligned}&= \frac{1}{2} (110) \\ &= 55^\circ\end{aligned}$$

17.



Join OT

$OP \perp PT$

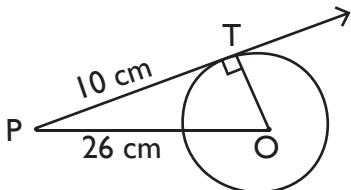
(As tangent is perpendicular to the radius through point of contact)

i.e. $\angle OPT = 90^\circ$

In $\angle OPT$,

$$\begin{aligned} OT^2 &= OP^2 + PT^2 \\ &= 5^2 + 8^2 \\ &= 25 + 64 \\ &= 89 \\ \therefore OT &= \sqrt{89} \text{ cm} \end{aligned}$$

18.



$OT \perp PT$ i.e. $\angle OTP = 90^\circ$

(Tangent is perpendicular to radius through point of contact.)

In $\triangle OTP$,

$$\begin{aligned} OP^2 &= OT^2 + PT^2 \\ &\quad \text{(By Pythagoras theorem)} \\ 26^2 &= OT^2 + 10^2 \\ 676 &= OT^2 + 100 \\ OT^2 &= 576 \\ OT &= 24 \text{ cm} \\ \therefore \text{Radius of the circle} &= 24 \text{ cm} \end{aligned}$$

19. AE and CE are tangents to the circle with center O,

$\therefore AE = CE$ (i)

(Lengths of tangents drawn from an exterior point to a circle are equal.)

Also, DE and BE are tangents to the circle with centre O²

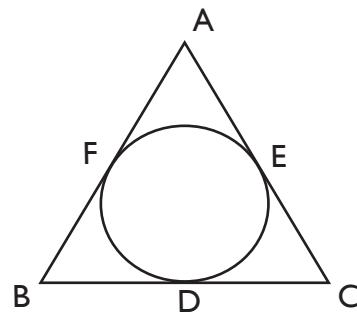
$\therefore BE = DE$ (ii)

(Lengths of tangents drawn from an exterior point to a circle are equal.)

On adding (i) and (ii), we get

$$\begin{aligned} AE + BE &= CE + DE \\ \therefore AB &= CD \end{aligned}$$

20.



$AF = AE$ (i)

(Lengths of tangents drawn from an exterior point to a circle are equal.)

Also, $AB = AC$ (ii)
(Given)

On subtracting (i) from (ii), we get

$$AB - AF = AC - AE$$

$$BF = CE \quad \text{(iii)}$$

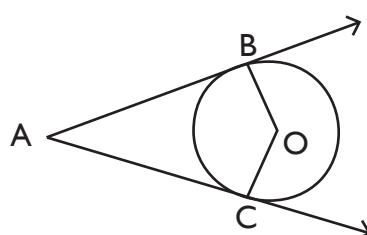
But $BF = BD$ and $CE = CD$

(Lengths of tangents drawn from an exterior point to a circle are equal.)

$\therefore BD = CD$

Section C

21.



$$FU = FT$$

Consider

$$AB + CD + EF$$

$$\begin{aligned} &= (AP + BP) + (CR + DR) + (ET + TF) \\ &= (AU + \underline{BQ}) + (\underline{CQ} + \underline{DS}) + (\underline{ES} + UF) \\ &= (BQ + QC) + (DS + ES) + (AU + FU) \\ &= BC + DE + AF \end{aligned}$$

25. PR and CR are tangents to circle with centre A

$$\therefore PR = CR \quad (\text{i})$$

(Lengths of tangents drawn from an exterior point to a circle are equal.)

QR and CR are tangent to circle with center B

$$\therefore QR = CR \quad (\text{ii})$$

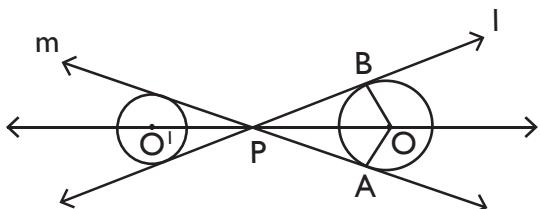
(Lengths of tangents drawn from an exterior point to a circle are equal.)

From (i) and (ii), we get

$$PR = QR$$

\therefore RC bisects PQ

26.



In $\triangle OPA$ and $\triangle OBP$,

$$OA = OB \quad (\text{Radii of circle})$$

$$PA = PB$$

(Lengths of tangents from an external point to a circle are equal.)

$$OP = PO \quad (\text{Common})$$

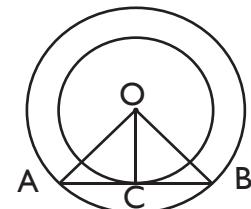
$\therefore \triangle AOP \cong \triangle OBP$ (SSS congruence criteria)

$$\Rightarrow \angle APO \cong \angle BPO \quad (\text{CPCT})$$

$\Rightarrow OP$ is the bisector of $\angle APB$

$\therefore O$ lies on the bisector of the angle between l and m.

27.



We know that the radius and tangent are perpendicular at their point of contact.

$$\therefore \angle OCA = \angle OCB = 90^\circ$$

Now, In $\triangle OCA$ and $\triangle OCB$

$$\angle OCA = \angle OCB = 90^\circ$$

$$OA = OB \quad (\text{Radii of the larger circle})$$

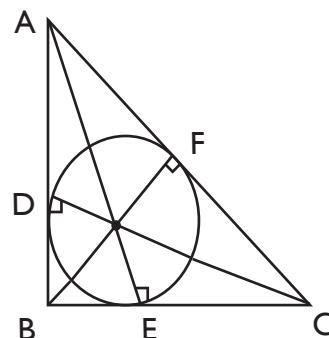
$$OC = OC \quad (\text{Common})$$

By RHS congruency

$$\triangle OCA \cong \triangle OCB$$

$$\therefore CA = CB$$

28.



In $\triangle ABC$, right angles at B

$$AC^2 = AB^2 + BC^2$$

$$= 24^2 + 10^2$$

$$= 576 + 100$$

$$= 676$$

$$\therefore AC = 26 \text{ cm}$$

$$\begin{aligned}\text{Area of } \triangle ABC &= \frac{1}{2} \times BC \times AB \\ &= \frac{1}{2} \times 10 \times 24 \\ &= 120 \text{ cm}^2\end{aligned}$$

Also, $OF \perp AC$, $OE \perp BC$ and $OD \perp AB$

(\because Tangent is perpendicular to the radius through point of contact.)

$$\begin{aligned}\text{Area of } \triangle BOC &= \frac{1}{2} \times BC \times OE \\ &= \frac{1}{2} \times 10 \times r \\ &= 5r\end{aligned}$$

$$\begin{aligned}\text{Area of } \triangle AOC &= \frac{1}{2} \times 26 \times r \\ &= 13r\end{aligned}$$

$$\begin{aligned}\text{Area of } \triangle AOB &= \frac{1}{2} \times AB \times OD \\ &= \frac{1}{2} \times 24 \times r \\ &= 12r\end{aligned}$$

$$\text{Area of } \triangle ABC = \text{Area of } \triangle BOC$$

$$+ \text{Area of } \triangle AOC$$

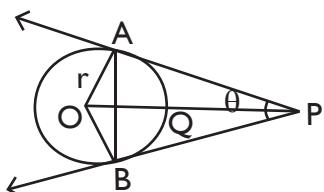
$$+ \text{Area of } \triangle AOB$$

$$\therefore 120 = 5r + 13r + 12r$$

$$120 = 30r$$

$$4 = r$$

29.



AP is tangent to the circle

$$\therefore OA \perp AP$$

$$\text{i.e. } \angle OAP = 90^\circ$$

(Tangent is perpendicular to radius through point of contact.)

In $\triangle OAP$,

$$\begin{aligned}\sin \theta &= \frac{OA}{OP} = \frac{r}{2r} \\ &= \frac{1}{2}\end{aligned}$$

(OP = Diameter = 2r)

$$\therefore \theta = 30^\circ$$

$$\Rightarrow \angle OPA = 30^\circ$$

$$\text{Similarly, } \angle OPB = 30^\circ$$

$$\therefore \angle APB = 30^\circ + 30^\circ$$

$$= 60^\circ$$

Also, $AP = BP$

(Lengths of tangent drawn from an external point to a circle are equal.)

So, in $\triangle APB$,

$$\angle PAB = \angle PBA \quad (\text{i})$$

(Angles opposite to equal sides are equal.)

In $\triangle APB$,

$$\Rightarrow \angle PAB + \angle PBA + \angle APB = 180^\circ$$

(Angle sum property)

$$\Rightarrow \angle PAB + \angle PAB + 60^\circ = 180^\circ$$

$$\Rightarrow 2 \angle PAB = 180^\circ - 60^\circ$$

$$= 120^\circ$$

$$\Rightarrow \angle PAB = \frac{120^\circ}{2}$$

$$= 60^\circ$$

$$\text{So, } \angle PAB = \angle PBA = \angle APB = 60^\circ$$

$\Rightarrow \triangle APB$ is equilateral.

30. As we know that lengths of tangents drawn from an external point to a circle are equal,

$$\therefore PD = PF, RF = RE, QD = QE$$

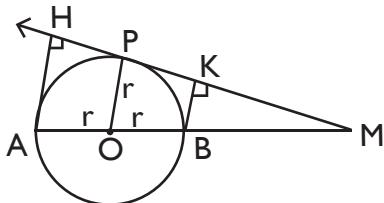
Consider

Perimeter of $\triangle PQR$

$$\begin{aligned} &= PQ + QR + PR \\ &= (\underline{PD} + DQ) + (QE + ER) + (\underline{PF} + FR) \\ &= (PD + PF) + (RF + RE) + (QD + QE) \\ &= (PF + PF) + (RE + RE) + (QD + QD) \\ &= 2 PF + 2 RE + 2 QD \\ &= 2 (PF + ER + QD) \end{aligned}$$

Section D

31.



PM is to circle

$$\therefore \angle MPO = 90^\circ$$

(Tangent is perpendicular to radius through point of contact)

Let $AH = x$, $BK = y$, $BM = z$

Let r be the radius of circle

In $\triangle MKB$ and $\triangle MHA$

$$\angle M = \angle M \quad (\text{Common})$$

$$\angle MKB = \angle MHA = 90^\circ$$

$$\therefore \triangle MKB \cong \triangle MHA$$

(AA similarity criterion.)

$$\Rightarrow \frac{MK}{MH} = \frac{KB}{HA} = \frac{MB}{MA}$$

(Corresponding sides of similar triangles are proportional)

$$\Rightarrow \frac{BK}{AH} = \frac{MB}{MA}$$

$$\Rightarrow \frac{x}{y} = \frac{z}{2r+z}$$

$$\Rightarrow 2ry + yz + = xz$$

$$\Rightarrow z = \frac{2ry}{x-y} \quad (\text{i})$$

Now, In $\triangle MKB$ and $\triangle MPO$,

$$\angle M = \angle M \quad (\text{Common})$$

$$\angle MKB = \angle MPO = 90^\circ$$

$\therefore \triangle MKB$ and $\triangle MPO$, (AA similarity criterion.)

$$\Rightarrow \frac{MK}{MP} = \frac{BK}{OA} = \frac{MB}{MO}$$

(Corresponding sides of similar triangles are proportional.)

$$\Rightarrow \frac{BK}{PO} = \frac{BM}{OM}$$

$$\Rightarrow \frac{y}{r} = \frac{z}{r+z}$$

$$\Rightarrow yr + yz = rz$$

$$\Rightarrow z = \frac{ry}{r-y} \quad (\text{ii})$$

From (i) and (ii), we get

$$z = \frac{2ry}{x-y} = \frac{ry}{r-y}$$

$$\Rightarrow \frac{2ry}{x-y} = \frac{ry}{r-y}$$

$$\Rightarrow \frac{2y}{x-y} = \frac{y}{r-y}$$

$$\Rightarrow \frac{2}{x-y} = \frac{1}{r-y}$$

$$\Rightarrow 2r - 2y = x + y$$

$$\Rightarrow x + y = 2r$$

$$\Rightarrow AH + BK = AB \quad (\because AB = 2r)$$

32. Consider $\triangle OEA$ and $\triangle OEP$

$$OA = OP \quad (\text{Radii of same circle})$$

$$OE = OE \quad (\text{Common})$$

$$AE = PE \quad (OE \text{ bisects } AP)$$

$$\therefore \triangle OEA \cong \triangle OEP$$

(SSS congruence criterion)

$$\Rightarrow \angle OEA = \angle OEP \quad (\text{CPCT})$$

$$\therefore \angle OEA = \angle OEP = 90^\circ \quad (\text{i})$$

($\angle OEA$ and $\angle OEP$ are linear pair)

Also, $AB \perp BC$ as BC is a tangent to the circle
(Tangent is perpendicular to the radius through the point of contact.)

$$\Rightarrow \angle ABC = 90^\circ \quad (\text{ii})$$

Now, In $\triangle AEO$ and $\triangle ABC$

$$\begin{aligned} \angle EAO &= \angle BAC & (\text{Common}) \\ \angle AEO &= \angle ABC \\ &= 90^\circ & (\text{From (i) and (ii)}) \end{aligned}$$

$$\Rightarrow \triangle AEO \sim \triangle ABC$$

(By SS Similarity criterion)

33. Given: d_1, d_2 ($d_2 > d_1$) be the diameters of two concentric circles and C be the length of a chord of a circle which is tangent to the circle.

$$\text{To prove: } d_2^2 = d_1^2 + c^2$$

Now,

$$OQ = \frac{d_2}{2}, OR = \frac{d_1}{2} \text{ and } PQ = c$$

Since PQ is tangent to the circle therefore OR is perpendicular to PQ

$$\Rightarrow QR = \frac{PQ}{2} = \frac{c}{2}$$

Using pythagorus theorem in triangle OQR

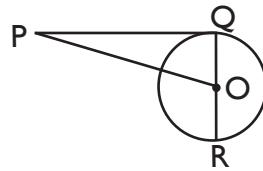
$$\begin{aligned} OQ^2 &= OR^2 + QR^2 \\ \Rightarrow \left(\frac{d_2}{2}\right)^2 &= \left(\frac{d_1}{2}\right)^2 + \left(\frac{c}{2}\right)^2 \end{aligned}$$

$$\Rightarrow \frac{1}{4} (d_2)^2 = \frac{1}{4} (d_1)^2 + (c)^2$$

$$\Rightarrow d_2^2 = d_1^2 + c^2$$

Hence Proved.

34.



$$OQ : PQ = 3 : 4$$

$$\text{Let } OQ = 3k, PQ = 4k$$

PQ is tangent to the circle

$$\therefore OQ \perp PQ$$

$$\text{i.e. } \angle OQP = 90^\circ$$

(Tangent is perpendicular to radius through point of contact.)

In $\triangle OQP$,

$$\begin{aligned} OP^2 &= OQ^2 + PQ^2 \\ &= (3k)^2 + (4k)^2 \\ &= 9k^2 + 16k^2 \\ &= 25k^2 \\ \therefore OP &= 5k \end{aligned}$$

Also, Perimeter of $\triangle POQ = 60$ cm

$$\Rightarrow PO + OQ + PQ = 60$$

$$\Rightarrow 5k + 3k + 4k = 60$$

$$\Rightarrow 12k = 60$$

$$\begin{aligned} \Rightarrow k &= \frac{60}{12} \\ &= 5 \end{aligned}$$

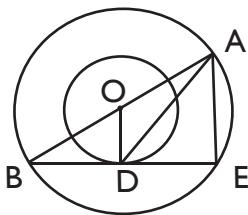
$$\text{So, } PQ = 4k = 4 \times 5 = 20 \text{ cm}$$

$$QR = 20 \quad Q = 2(3k) = 6k$$

$$= 6 \times 5 = 30 \text{ cm}$$

$$OP = 5k = 5 \times 5 = 25 \text{ cm}$$

35.



BE is tangent to circle

$$\therefore OD \perp BE$$

$$\text{i.e. } \angle ODB = 90^\circ$$

(Tangent is perpendicular to radius through point of contact)

$$\Rightarrow BD = DE$$

(As perpendicular from centre to the chord bisects the chord)

$$\Rightarrow D \text{ is a midpoint of } BE$$

Also, O being the centre is a midpoint of AB

So, By midpoint theorem,

$$OD \parallel AE \text{ and } OD = \frac{1}{2}AE$$

$$\therefore AE = 20 \text{ cm}$$

$$= 2(8)$$

$$= 16 \text{ cm}$$

In $\triangle ODB$, $\angle ODB = 90^\circ$

$$\therefore OB^2 = OD^2 + BD^2$$

(By Pythagoras theorem)

$$\Rightarrow 13^2 = 8^2 + BD^2$$

$$\Rightarrow 169 = 64 + BD^2$$

$$\Rightarrow BD^2 = 169 - 64$$

$$\Rightarrow BD^2 = 105$$

$$\Rightarrow BD = \sqrt{105} \text{ cm}$$

$$\Rightarrow DE = \sqrt{105} \text{ cm}$$

($\because BD = DE$)

In $\triangle AED$, $\angle AED = 90^\circ$

$$\therefore AD^2 = AE^2 + DE^2$$

$$= (16)^2 + (\sqrt{105})^2$$

$$= 256 + 105$$

$$= 361$$

$$\therefore AD = 19 \text{ cm}$$

36. BD is tangent to the circle

$$\therefore OC \perp BD$$

$$\text{i.e. } \angle OCD = 90^\circ$$

(Tangent is perpendicular to radius through point of contact.)

$$\Rightarrow \angle OCA + \angle ACD = 90^\circ \quad (\text{i})$$

$$\text{Now, } OA = OC$$

(Being radii of same circle.)

$$\therefore \text{In } \triangle AOC,$$

$$\angle OCA = \angle OAC$$

(Angles opposite to equal sides are equal.)

$$\Rightarrow \angle OCA = \angle BAC \quad (\text{ii})$$

From (i) and (ii), we get

$$\angle BAC + \angle ACD = 90^\circ$$